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NOTES ON FINITELY GENERATED FLAT MODULES

Abolfazl Tarizadeh

Abstract. In this paper, the projectivity of finitely generated flat mod-

ules of a commutative ring are studied from a topological point of view.

Then various interesting results are obtained. For instance, it is shown
that if a ring has either finitely many minimal primes or finitely many

maximal ideals then every finitely generated flat module over it is projec-
tive. It is also shown that if a particular subset of the prime spectrum of a

ring satisfies some certain ascending or descending chain conditions, then

every finitely generated flat module over this ring is projective. These
results generalize some major results in the literature on the projectivity

of finitely generated flat modules.

1. Introduction

Studying the projectivity of finitely generated flat modules has been the
main topic of many articles over the years and it is still of current interest, see
e.g. [1], [2], [4], [7, §4E], [10], [12], [15] and [17]. The main motivation behind
in the investigating the projectivity of f.g. flat modules stems from the fact
that “every f.g. flat module over a local ring is free”. We use f.g. in place of
“finitely generated”. Note that in general there are f.g. flat modules which are
not necessarily projective, see [12, Example 2.9] see also [5, Tag 00NY].

In this article we have applied the spectral (Zariski and flat) and compact
spectral (patch) topologies of the prime spectrum Spec(R) in order to inves-
tigate the projectivity of f.g. flat R-modules. The obtained results from this
method generalize some major results in the literature on the projectivity of
f.g. flat modules. In fact, Theorem 3.11 vastly generalizes [7, Theorem 4.38],
[4, Corollary 1.5], [10, Fact 7.5] and [11, Corollary 3.57] in the commutative
case. Also Theorem 3.13 generalizes [10, Proposition 7.6]. In summary, The-
orems 3.1, 3.2, 3.11 and 3.13 and Corollaries 3.4, 3.5, 3.6, 3.7 and 3.9 are the
main results of this paper. In this paper, all rings are commutative.

Received March 17, 2019; Revised July 14, 2019; Accepted September 19, 2019.

2010 Mathematics Subject Classification. 13C10, 19A13, 13C11, 13E99.
Key words and phrases. Flat module, flat topology, patch topology, projectivity, S-ring.

c©2020 Korean Mathematical Society

419



420 A. TARIZADEH

2. Preliminaries

Let R be a commutative ring. Then there is a (unique) topology over
Spec(R) such that the collection of subsets V (f) = {p ∈ SpecR : f ∈ p} with
f ∈ R forms a sub-basis for the opens of this topology. It is called the flat (or,
inverse) topology. Therefore, the collection of subsets V (I) = {p ∈ Spec(R) :
I ⊆ p} where I runs through the set of finitely generated ideals of R forms a
basis for the flat opens. It is proved that the flat closed subsets of Spec(R)
are precisely of the form Imϕ∗ where ϕ : R → A is a “flat” ring map. Recall
that if ϕ : R → A is a ring map, then the induced map Spec(A) → Spec(R)
given by p ϕ−1(p) is denoted by ϕ∗ or by Spec(ϕ). Also, by a flat ring map
ϕ : R → A we mean ϕ is a ring map and that A as an R-module, induced via
ϕ, is a flat R-module. There is a (unique) topology over Spec(R) such that
the collection of subsets D(f) ∩ V (g) with f, g ∈ R forms a sub-basis for the
opens of this topology where D(f) = Spec(R)\V (f). It is called the patch (or,
constructible) topology. Therefore the collection of subsets D(f) ∩ V (I) with
f ∈ R and I runs through the set of finitely generated ideals of R is a basis
for the patch opens. It is also proved that the patch closed subsets of Spec(R)
are precisely of the form Imϕ∗ where ϕ : R → A is a ring map. Clearly the
patch topology is finer than the flat and Zariski topologies. The flat topology
behaves as the dual of the Zariski topology. For instance, if p is a prime ideal of
R, then its closure with respect to the flat topology comes from the canonical
ring map R → Rp. In fact, Λ(p) = {q ∈ SpecR : q ⊆ p}. Here Λ(p) denotes
the closure of {p} in SpecR with respect to the flat topology. Recall that a
subset E of Spec(R) is said to be stable under the generalization (resp. spe-
cialization) if for any two prime ideals p and q of R with p ⊂ q (resp. q ⊂ p)
if q ∈ E, then p ∈ E. Therefore, a subset of Spec(R) is flat closed if and only
if it is patch closed and stable under the generalization. Dually, a subset of
Spec(R) is Zariski closed if and only if it is patch closed and stable under the
specialization. A subset of Spec(R) is said to be a double-closed if it is closed
with respect to the both flat and Zariski topologies. For more details see [3] or
[13]. We shall freely use the above facts in this paper.

3. Main results

Let R be a ring. If E is a subset of Spec(R), then we define F(E) =⋃
p∈E Λ(p) and Z(E) =

⋃
p∈E V (p). We have then the following interesting

result.

Theorem 3.1. (i) If E is Zariski closed, then F(E) is flat closed.
(ii) If E is patch closed, then Z(E) is Zariski closed.
(iii) If E is stable under the generalization and E = V (I) for some ideal I

of R, then R/J is R-flat and E = V (J) where J is the kernel of the canonical
map R→ S−1R with S = 1 + I.
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Proof. (i) Suppose E = V (I) for some ideal I of R. We claim that F(E) =
Imπ∗ where π : R→ S−1R is the canonical map with S = 1+ I. The inclusion
F(E) ⊆ Imπ∗ is obvious. To prove the reverse inclusion, let q be a prime ideal
of R such that q∩S = ∅. There exists a prime ideal p of R such that q ⊆ p and
S−1p is a maximal ideal of S−1R. We have I ⊆ p. If not, then choose some
element f ∈ I \ p. Clearly (p + Rf) ∩ S 6= ∅. Thus there are elements r ∈ R
and g ∈ I such that 1 + rf + g ∈ p. But this is a contradiction since p∩S = ∅.
Therefore q ∈ F(E).

(ii) We have E = Imϕ∗ for some ring morphism ϕ : R→ A. It follows that
Z(E) = V (I) where I = Kerϕ. Because the inclusion Z(E) ⊆ V (I) is obvious.
To prove the reverse inclusion, pick p ∈ V (I). Let q be a minimal prime of I
such that q ⊆ p. Thus there exists a prime ideal of A which lying over q/I,
because it is well known that in an extension of rings, for every minimal prime
of the subring then there exists a (minimal) prime of the extended ring which
lying over it, see e.g. [13, Lemma 3.9]. It follows that q ∈ E.

(iii) Clearly E ⊆ V (J) by the fact that S is not contained in any element
in E. By the proofs of (i) and (ii), we have Z

(
F(E)

)
= V (J). It follows

that V (J) ⊆ E because E is stable under the generalization. Thus E = V (J).
Using this, then by [12, Theorem 2.5], in order to show that R/J is R-flat, it
suffices to prove that Ann(f) + J = R for any f ∈ J . If not, then there exists
some p ∈ Spec(R) such that Ann(f) + J ⊆ p. Thus p ∈ V (J) = V (I), which
implies that I ⊆ p. Since f ∈ J , it follows that there exists some a ∈ I such
that (1 + a).f = 0. Thus 1 + a ∈ Ann(f). So 1 + a ∈ p. Hence 1 ∈ p, a
contradiction. Therefore, Ann(f) + J = R. �

An ideal I of a ringR is called a pure ideal if the canonical ring mapR→ R/I
is a flat ring map.

As a first application of Theorem 3.1 we obtain the following result.

Theorem 3.2. Let R be a ring. Then the assignment I  V (I) is a bijective
map from the set of pure ideals of R onto the set of Zariski closed subsets of
Spec(R) which are stable under the generalization.

Proof. First we show that this map is well-defined. That is, if R/I is R-flat,
then we have to show that V (I) is stable under the generalization. Let p and
q be two prime ideals of R such that I ⊆ p and q ⊆ p. Suppose there is some
f ∈ I such that f /∈ q. It follows that Ann(f) ⊆ q. So Ann(f)+I ⊆ p. But this
is a contradiction since Ann(f) + I = R by [12, Theorem 2.5]. Thus q ∈ V (I).
Then we show that this map is injective. Let I and J be two ideals of R such
that R/I and R/J are R-flat and V (I) = V (J). Take f ∈ I. If f /∈ J , then
by [12, Theorem 2.5], Ann(f) + J 6= R. Thus there exists a prime ideal p of
R such that Ann(f) + J ⊆ p. It follows that Ann(f) + I ⊆ p. But this is a
contradiction since Ann(f) + I = R. Therefore I = J . The surjectivity of this
map implies from Theorem 3.1(iii). �
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Remark 3.3. In regarding with Theorem 3.2, note that a subset of Spec(R) is
Zariski closed and stable under the generalization if and only if it is flat closed
and stable under the specialization, see [13, Theorem 3.11].

Corollary 3.4. Let I be an ideal of a ring R such that
√
I is a pure ideal.

Then I =
√
I.

Proof. If f ∈ I, then by [12, Theorem 2.5], Ann(f) +
√
I = R. It follows that√

Ann(f) +
√
I = R and so Ann(f) + I = R. Thus again by [12, Theorem 2.5],

R/I is R-flat. Then, by Theorem 3.2, I =
√
I. �

Corollary 3.5. If I is a pure ideal of a reduced ring R, then I =
√
I.

Proof. By [12, Theorem 2.5], Supp(I) = Spec(R) \ V (I) ⊆ Supp(
√
I) where

Supp(I) = {p ∈ Spec(R) : Ip 6= 0}. Conversely, if p ∈ Supp(
√
I), then there

exists some f ∈
√
I such that f/1 6= 0. If Ip = 0, then there exist s ∈ R \ p

and a natural number n ≥ 1 such that sfn = 0. It follows that sf = 0 since R
is reduced. But this is a contradiction. Therefore p ∈ Supp(I). Hence, R/

√
I

is R-flat. Thus by Theorem 3.2, I =
√
I. �

Corollary 3.6. Let I and J be two ideals of a reduced ring R such that I is a
pure ideal and V (I) = V (J). Then I = J .

Proof. We have V (I) = V (J) if and only if
√
I =

√
J . By Corollary 3.5,

I =
√
I. Hence

√
J = I is a pure ideal. This yields that J =

√
J , see Corollary

3.4. �

Corollary 3.7. Let I be an ideal of a ring R. If I is a pure ideal of R, then
V (I) is a flat closed subset of Spec(R). If moreover, R is a reduced ring, then
the converse holds.

Proof. If I is a pure ideal, then the canonical ring map π : R → R/I is a flat
ring map. Thus by the definition of the flat topology, V (I) = Imπ∗ is a flat
closed subset of Spec(R). Conversely, if V (I) is a flat closed subset of Spec(R),
then it is stable under the generalization. Therefore by Theorem 3.1(iii), there
exists a pure ideal J of R such that V (I) = V (J). Then by Corollary 3.6,
I = J . �

Lemma 3.8. If I is a pure ideal of a ring R, then for each finite subset
{f1, . . . , fn} of I there exists some g ∈ I such that fi = fig for all i.

Proof. By [12, Theorem 2.5], R/I is R-flat if and only if AnnR(f) + I = R for
all f ∈ I. Thus for each pair (f, f ′) of elements of I then there exist h, h′ ∈ I
such that f = fh and f ′ = f ′h′. Clearly g := h + h′ − hh′ ∈ I, f = fg and
f ′ = f ′g. �

Corollary 3.9. For an ideal I of a ring R then the following are equivalent.
(i) I is a pure ideal.
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(ii) For each R-module M then the canonical morphism I⊗RM →M given
by a⊗m am is injective.

(iii) IJ = I ∩ J for all ideals J of R.

Proof. (i)⇒(ii) Suppose
∑

i aimi = 0 where ai ∈ I and mi ∈ M for all i. By
Lemma 3.8, there exists some b ∈ I such that ai = aib for all i. We have then∑

i ai ⊗mi = b⊗ (
∑

i aimi) = 0.
(ii)⇒(iii) If f ∈ I ∩ J , then the pure tensor f ⊗ (1 + J) of I ⊗R R/J is zero

by (ii). Then using the canonical isomorphism I ⊗R R/J → I/IJ , we get that
f ∈ IJ .

(iii)⇒(i) By [9, Theorem 7.7], it suffices to show that for each ideal J of R
then the canonical morphism J⊗RR/I → J(R/I) given by a⊗(r+I) ra+I
is an isomorphism. But this morphism, using the hypothesis, is the composition
of the following two canonical isomorphisms:

J ⊗R R/I
' // J/IJ = J/I ∩ J ' // (I + J)/I = J(R/I). �

A ring R is called an S-ring (“S” refers to Sakhajev) if every f.g. flat R-
module is R-projective.

We have improved the following well known result by adding (iv)-(vii) as
new equivalents. The equivalency of the classical criteria are also proved by
new methods.

Theorem 3.10. For a ring R the following conditions are equivalent.
(i) The ring R is an S-ring.
(ii) Every cyclic flat R-module is R-projective.
(iii) R/I is R-projective whenever it is R-flat where I is an ideal of R.
(iv) Every Zariski closed subset of Spec(R) which is stable under the gener-

alization is Zariski open.
(v) Every patch closed subset of Spec(R) which is stable under the general-

ization and specialization is patch open.
(vi) Every flat closed subset of Spec(R) which is stable under the specializa-

tion is flat open.
(vii) Each double-closed subset of Spec(R) is of the form V (e) where e ∈ R

is an idempotent.
(viii) For every sequence (fn)n≥1 of elements of R if fn = fnfn+1 for all

n, then there exists some k such that fk is an idempotent and fn = fk for all
n ≥ k.

(ix) For every sequence (gn)n≥1 of elements of R if gn+1 = gngn+1 for all
n, then there exists some k such that gk is an idempotent and gn = gk for all
n ≥ k.

Proof. The implications (i)⇒(ii)⇒(iii) are obvious.
(iii)⇒(iv) Suppose E ⊆ Spec(R) is stable under the generalization and E =

V (I) for some ideal I of R. By Theorem 3.1, there is an ideal J such that
R/J is R-flat and E = V (J). Thus, by the hypothesis, R/J is R-projective.
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It follows that E is Zariski open because it is well known that the support of
a projective module is Zariski open, see [8, Lemma 6.2] or [14, Corollary 3.5]
and also see [16, Lemma 1.1].

(iv)⇔(v) It follows from the fact that a subset of Spec(R) is Zariski closed
if and only if it is patch closed and is stable under the specialization.

(v)⇔(vi) It follows from the fact that a subset of Spec(R) is flat closed if
and only if it is patch closed and is stable under the generalization.

(vi)⇒(vii) Let E be a double-closed subset of Spec(R). It follows that E is
Zariski closed and is stable under the generalization. Thus, using the equiva-
lency (vi)⇔(iv), we get that E is also Zariski open. Therefore E is a clopen
(both open and closed) subset of Spec(R). But it is well known that the map
f  D(f) is a bijective map from the set of idempotents of R onto the set of
clopens of Spec(R), see [5, Tag 00EE]. Thus there exists an idempotent e′ ∈ R
such that E = D(e′) = V (e) where e := 1− e′.

(vii)⇒(iv) There is nothing to prove.
(iv)⇒(i) Let M be a f.g. flat R-module. To prove the assertion, by [12,

Theorem 2.8], it suffices to show that for each natural number n, ψ−1({n}) is
Zariski open where ψ is the rank map of M , see [12, Remark 2.4]. We have
ψ−1({n}) = SuppN ∩

(
Spec(R) \ SuppN ′

)
where N = Λn(M) and N ′ =

Λn+1(M). But SuppN and SuppN ′ are Zariski closed since N and N ′ are
f.g. R-modules (recall the fact that if M is a f.g. R-module, then Supp(M) =
V (I) where I = AnnR(M)). But N is a flat R-module. By applying [12,
Corollary 2.6] then we observe that the support of a f.g. flat module is stable
under the generalization. Thus by the hypothesis, SuppN is Zariski open.
Therefore ψ−1({n}) is Zariski open.

(iii)⇒(viii) Let I = (fn : n ≥ 1). Clearly AnnR(f) + I = R for all f ∈ I.
It follows that R/I is R-flat and so, by the hypothesis, it is R-projective.
Therefore by [12, Lemma 2.7], there exists g ∈ I such that I = Rg. It follows
that there is some d ≥ 1 such that Rg = Rfd since I =

⋃
n≥1Rfn. Let

k = d+ 1. There exists some r ∈ R such that fk = rfd = rfdfk = f2k . We also
have fk+1 = r′fk for some r′ ∈ R. It follows that fk+1 = fk+1fk = fk and by
the induction we obtain that fn = fk for all n ≥ k.

(viii)⇒(iii) Let I be an ideal of R such that R/I is R-flat. We shall prove
that I is generated by an idempotent element. To do this we act as follows.
Let I be the set of ideals of the form Re where e ∈ I is an idempotent element.
Let {Ren : n ≥ 1} be an ascending chain of elements of I. For each n there
is some rn ∈ R such that en = rnen+1. It follows that en = enen+1. Thus,
by the hypothesis, the chain Re1 ⊆ Re2 ⊆ · · · is stationary. Therefore, by the
axiom of choice, I has at least a maximal element Re. We also claim that if
J = (fn : n ≥ 1) is a countably generated ideal of R with J ⊆ I, then there
exists an idempotent e′ ∈ I such that J ⊆ Re′. Because, by Lemma 3.8, there is
an g1 ∈ I such that f1 = f1g1. Then for the pair (g1, f2), again by Lemma 3.8,
we may find an g2 ∈ I such that g1 = g1g2 and f2 = f2g2. Therefore, in this
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way, we obtain a sequence (gn) of elements of I such that J ⊆ L = (gn : n ≥ 1)
and gn = gngn+1 for all n ≥ 1. But, by the hypothesis, there exists some
k ≥ 1 such that gk is an idempotent and gn = gk for all n ≥ k. It follows that
L = Rgk. This establishes the claim. Now pick f ∈ I. Then, by what we have
proved above, there is an idempotent e′ ∈ I such that Re ⊆ (e, f) ⊆ Re′. By
the maximality of Re, we obtain that e = e′. Thus I = Re and so R/I as an
R-module is isomorphic to R(1− e). Therefore R/I is R-projective.

(viii)⇔(ix) Let (fn) be a sequence of elements of R. Put gn := 1− fn for all
n. Then fn = fnfn+1 if and only if gn+1 = gngn+1. �

As a consequence of Theorem 3.10, we obtain the following result which in
turn vastly generalizes some previous results in the literature specially including
[7, Theorem 4.38], [4, Corollary 1.5], [10, Fact 7.5] and [11, Corollary 3.57] in
the commutative case.

Theorem 3.11. Let R be a ring which has either finitely many minimal primes
or finitely many maximal ideals. Then R is an S-ring.

Proof. Let F be a patch closed subset of Spec(R) which is stable under the
generalization and specialization. By Theorem 3.10, it suffices to show that it
is a patch open. First assume that Min(R) = {p1, . . . , pn}. There exists some
s with 1 ≤ s ≤ n such that ps, ps+1, . . . , pn /∈ F but pi ∈ F for all i < s. It
follows that Spec(R)\F =

⋃n
i=s V (pi). Therefore F is Zarsiki open in this case

and so it is patch open. Now assume that Max(R) = {m1, . . . ,md}. Similarly,
there exists some k with 1 ≤ k ≤ d such that mk,mk+1, . . . ,md /∈ F but mi ∈ F
for all i < k. We have Spec(R) \ F =

⋃d
i=k Λ(mi). Therefore F is a flat open

in this case and so it is patch open. �

Remark 3.12. In relation with Theorem 3.11, note that though every projective
module over a local ring is free (see [6] or [5, Tag 0593]), but in general this is not
necessarily true even for a semi-local ring (a ring with finitely many maximal
ideals) which is not local. As a specific example, let n > 1 be a natural number
which has at least two distinct prime factors and let n = ps11 · · · p

sk
k be its prime

factorization where pi are distinct prime numbers and si ≥ 1 for all i. Each
Ai can be considered as an R-module through the canonical ring map R→ Ai

where R = Z/nZ and Ai = Z/psii Z. By the Chinese remainder theorem, R as

a module over itself is isomorphic to the direct sum
⊕k

i=1Ai. Thus each Ai is
R-projective since it is a direct summand of the free R-module R. But none
of them is R-free since every non-zero free R-module has at least n elements
while psii < n for all i. Note that R is a semi-local ring with the maximal ideals
piZ/nZ.

Theorem 3.13. Let X be a subset of Spec(R) with the property that for each
maximal ideal m of R there exists some p ∈ X such that p ⊆ m. If the collection
of subsets X ∩ V (f) with f ∈ R satisfies either the ascending chain condition
or the descending chain condition, then R is an S-ring.
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Proof. By [12, Corollary 3.4], it suffices to show that R/J is an S-ring where
J =

⋂
p∈X p. Let (xn) be a sequence of elements of R/J such that xn = xnxn+1

for all n. Suppose xn = an + J for all n. Let En = X ∩ V (an) and let
Fn = X ∩ V (1 − an). Clearly En ⊇ En+1, Fn ⊆ Fn+1 and X = En ∪ Fn+1.
First assume the descending chain condition. Then there exists some d ≥ 1
such that En = Ed for all n ≥ d. Therefore X = En ∪ Fn for all n > d. Thus
an(1 − an) ∈ p for all p ∈ X and all n > d. It follows that xn = x2n for all
n > d. We claim that the ascending chain V (1 − xd+1) ⊆ V (1 − xd+2) ⊆ · · ·
eventually stabilizes. If not, then we may find some k > d such that V (1− xk)
is a proper subset of V (1− xk+1). Thus there exists a prime ideal q of R such
that J ⊆ q and 1− ak+1 ∈ q but ak ∈ q. There is a maximal ideal m of R such
that q ⊆ m. By the hypothesis, there is a p ∈ X such that p ⊆ m. Clearly
1 − ak+1, ak ∈ p. This means that Ek+1 is a proper subset of Ek. But this
is a contradiction. This establishes the claim. Therefore there exists some `
with ` ≥ d + 1 such that V (1 − xn) = V (1 − x`) for all n ≥ `. But we have
D(xn) = V (1 − xn) = V (1 − x`) = D(x`) and the xn are idempotent for all
n ≥ `. This yields that xn = x` for all n ≥ `. Thus by Theorem 3.10(viii),
R/J is an S-ring in the case of the descending chain condition. Apply a similar
argument as above for the chain F1 ⊆ F2 ⊆ · · · in the case of the ascending
chain condition. �

Corollary 3.14. If the collection of subsets Min(R)∩V (f) with f ∈ R satisfies
either the ascending chain condition or the descending chain condition, then R
is an S-ring.

Proof. It implies from Theorem 3.13 by taking X = Min(R). �

Corollary 3.15 ([10, Proposition 7.6]). If the collection of subsets Max(R) ∩
V (f) with f ∈ R satisfies either the ascending chain condition or the descending
chain condition, then R is an S-ring.

Proof. In Theorem 3.13, put X = Max(R). �

Proposition 3.16. The direct product of a family of rings (Ri)i∈I is an S-ring
if and only if I is a finite set and each Ri is an S-ring.

Proof. Let R =
∏

i∈I Ri be an S-ring. We may assume that all of the rings
Ri are non-zero. Suppose I is an infinite set. Consider a well-ordered relation
< on I. Let i1 be the least element of I and for each natural number n ≥ 1,
by induction, let in+1 be the least element of I \ {i1, . . . , in}. Now we define
xn = (rn,i)i∈I as an element of R by rn,i = 1 for all i ∈ {i1, . . . , in} and rn,i = 0
for all i ∈ I \ {i1, . . . , in}. Clearly the sequence (xn) satisfies the condition
xn = xnxn+1. Thus, by Theorem 3.10, there is some k such that xn = xk for
all n ≥ k. But this is a contradiction. Thus I should be a finite set. The
remaining assertions, by applying Theorem 3.10(viii), are straightforward. �
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