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ASYMPTOTIC EXACTNESS OF SOME BANK–WEISER

ERROR ESTIMATOR FOR QUADRATIC TRIANGULAR

FINITE ELEMENT

Kwang-Yeon Kim and Ju-Seong Park

Abstract. We analyze a posteriori error estimator for the conforming
P2 finite element on triangular meshes which is based on the solution

of local Neumann problems. This error estimator extends the one for

the conforming P1 finite element proposed in [4]. We prove that it is
asymptotically exact for the Poisson equation when the underlying trian-

gulations are mildly structured and the solution is smooth enough.

1. Introduction

In this work we propose and analyze a posteriori error estimator of the
Bank–Weiser type for the conforming P2 finite element method of the Poisson
equation

(1)

{
−∆u = f in Ω ⊂ R2,

u = g on ∂Ω,

where Ω is a bounded polygon with the boundary ∂Ω and (f, g) ∈ L2(Ω) ×
H1/2(∂Ω) are given functions. This type of an error estimator was introduced
by Bank and Weiser [4] for the conforming P1 finite element. It is implicit
and belongs to the class of element residual methods in that local Neumann
problems are solved independently on each element using higher-order correc-
tion spaces to compute the error estimator. Some extensions were made to the
lowest-order Raviart–Thomas element in [3] and also to the Stokes equation in
[5, 10,12,16].

It is well described in [2, Section 3.1] why implicit a posteriori error estima-
tors are often preferred over explicit ones. In particular, by utilizing the super-
convergence result for the P1 element (see, e.g., [19]), it was shown in [8, 13]
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that the Bank–Weiser error estimator for the P1 element using quadratic cor-
rection spaces (composed of quadratic edge bubbles) is asymptotically exact,
i.e., the effectivity index (which is measured by the ratio of the estimated error
to the true error) approaches one as the mesh size tends to zero under proper
conditions on the triangulations. We mention that other types of asymptoti-
cally exact error estimators have been obtained by gradient recovery methods
[14,20] and hierarchical basis error estimation [15].

In this paper, the Bank–Weiser error estimator is extended to the conforming
P2 finite element while retaining the property of asymptotic exactness under
the usual assumptions that the triangulations are mildly structured (in the
sense of Xu and Zhang [19]) and the solution u of the problem (1) is smooth
enough. It has been found that the error estimator is sensitive to the choice
of correction spaces used to solve local Neumann problems (see [1, 2] for some
discussion in quadrilateral cases). In [11,17] the authors considered some error
estimators of the Bank–Weiser type for the conforming P2 element whose P3
correction spaces exclude only vertex degrees of freedom, but it turned out
that they are not as effective as for the P1 element. In this paper we choose
a slightly smaller correction space than those of [11,17] and show that it leads
to an asymptotically exact error estimator. The argument is similar to but
more complicated than those of [8,13], and the superconvergence result for the
quadratic finite element from [9] plays a crucial role.

The rest of the paper is organized as follows. In Section 2 we introduce
some notation and define the Bank–Weiser error estimator for the conforming
P2 finite element. We prove some super-closeness result for the moment-based
quadratic interpolation in Section 3 and then establish the asymptotic exactness
of the error estimator in Section 4. Finally, in Section 5, some numerical results
are provided to illustrate the theoretical result.

2. Finite element method and error estimator

Let Th = {T} be a shape-regular partition of Ω into triangles with the mesh
size h = maxT∈Th hT , where hT is the diameter of T . For a triangle T , we
denote the unit outward normal vector to ∂T by nT = (n1, n2) and the unit
tangent vector on ∂T by tT = (−n2, n1). Let ωT be the union of at most three
triangles of Th sharing an edge with T .

We will use the notation ∂v
∂z := ∇v · z to denote the directional derivative

of a function v along the unit vector z. The jump and the mean value of
the normal derivative of a piecewise smooth function v across an interior edge
e = ∂T ∩ ∂T ′ are defined as[[

∂v

∂n

]]
e

= (∇v|T −∇v|T ′) · n,
〈
∂v

∂n

〉
e

=
1

2
(∇v|T +∇v|T ′) · n,
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where n = nT |e or nT ′ |e. For a boundary edge e ⊂ ∂Ω ∩ ∂T , we simply set[[
∂v

∂n

]]
e

= 0,

〈
∂v

∂n

〉
e

= ∇v|T · nT .

The subscript e will be dropped whenever no confusion is likely to arise.
Let Pk(T ) be the space of all polynomials of degree at most k restricted to

T and define the cubic correction space for P2(T ) by

P0
3(T ) = {v ∈ P3(T ) : v vanishes at vertices and midpoints of edges of T}.

It is easy to verify that P3(T ) = P2(T ) ⊕ P0
3(T ) and P0

3(T ) is 4-dimensional
with the basis functions

ψ0 = λ1λ2λ3, ψi = λi+1λi+2(λi+1 − λi+2) (1 ≤ i ≤ 3),

where λi’s are barycentric coordinates on T (cf. [9]). By the scaling argument
one can obtain

(2) ‖v‖0,T + h
1/2
T ‖v‖0,∂T . hT ‖∇v‖0,T ∀v ∈ P0

3(T ).

Hereafter we will frequently use the notation a . b (resp. a & b) in place of
the inequality a ≤ Cb (resp. a ≥ Cb) with the constant C > 0 independent of
the mesh size h.

Now let uh ∈ H1(Ω) be the conforming P2 finite element approximation to
the solution u of the problem (1). Following the idea of Bank and Weiser [4],
we consider the following error estimator based on solution of local problems.

Definition. For every T ∈ Th, let εT ∈ P0
3(T ) be the solution of

(3) (∇εT ,∇v)T = (f + ∆uh, v)T −
1

2

∫
∂T

[[
∂uh
∂nT

]]
v ds ∀v ∈ P0

3(T )

and set

(4) η =

( ∑
T∈Th

‖∇εT ‖20,T
)1/2

.

Note that (3) represents a 4× 4 matrix system. Like in [2,17], we may take
v = εT in (3) and apply (2) to obtain

‖∇εT ‖0,T . hT ‖f + ∆uh‖0,T + h
1/2
T

∥∥∥∥[[ ∂uh∂nT

]]∥∥∥∥
0,∂T

.

Combined with the local lower bound for standard residuals, this shows that η
yields a local lower bound for the true error ‖∇(u− uh)‖0,Ω. The global upper
bound of η may be obtained under the saturation assumption as was done in
[4] for the P1 finite element method.

Remark 2.1. In [11] Liao considered some cubic and quartic correction spaces
which are bigger than P0

3(T ). Numerical experiments show that the resulting
error estimators are not asymptotically exact even on uniform triangulations.
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3. Super-closeness result

This section is devoted to the proof of some super-closeness result which is
an analogue of Lemma 7.1 in [13]. First we need the following result.

Lemma 3.1. Let pI ∈ P2([a, b]) be the moment-based quadratic interpolation of

p ∈ C([a, b]) such that pI(a) = p(a), pI(b) = p(b) and
∫ b
a
pI(x) dx =

∫ b
a
p(x) dx.

If p ∈ P3([a, b]), then we have p′′(a+b
2 ) = p′′I .

Proof. By Simpson’s rule we obtain pI(m) = p(m), where m = a+b
2 , and thus

p(x)− pI(x) = c(x− a)(x− b)(x−m)

for some constant c. This gives

p′′(x)− p′′I = c{6x− 2(a+ b+m)}
which vanishes if and only if x = m. �

The moment-based quadratic interpolation wI of w ∈ H2(Ω) on a triangle
T is defined in the same way, i.e., wI(z) = w(z) for each vertex z of T and∫
e
wI ds =

∫
e
w ds for each edge e of T . Following [19], we also say that two

adjacent triangles T, T ′ ∈ Th form an O(h1+α
T ) approximate parallelogram if

the lengths of two opposite edges of T ∪ T ′ differ by O(h1+α
T ). In this case it

holds that | |T | − |T ′| | = O(h2+α
T ), where |S| denotes the area of S.

Lemma 3.2. Assume that two adjacent triangles T, T ′ ∈ Th form an O(h1+α
T )

approximate parallelogram. Let e = ∂T ∩ ∂T ′ be their common edge with the
midpoint me, ne = nT |e and te = tT |e. If w ∈ P3(T ∪ T ′), then we have∣∣∣∣ ∂2w

∂te∂ne
(me)−

∂

∂te

〈
∂wI
∂ne

〉
e

∣∣∣∣ . h1+α
T |w|3,∞,T∪T ′ .

Proof. Let {ek}3k=1 denote the edges of T with the edge lengths {lk}3k=1, the
midpoints {mk}3k=1, the unit outward normal vectors {nk}3k=1 and the unit
tangent vectors {tk}3k=1 in the counterclockwise orientation. Similar notation
applies to T ′ (see Figure 1). Assume that e = e1 = e′1, so that we have
ne = n1 = −n′1 and te = t1 = −t′1.

We will crucially use the following identity (cf. (2.9) of [9])

(5) 4|T | ∂2

∂tk∂nk
= (l2k+2 − l2k+1)

∂2

∂t2
k

+ l2k+1

∂2

∂t2
k+1

− l2k+2

∂2

∂t2
k+2

.

First, this gives

4(|T |+ |T ′|) ∂2w

∂te∂ne
(me)(6)

= 4|T | ∂2w

∂t1∂n1

∣∣∣∣
T

(m1) + 4|T ′| ∂2w

∂t′1∂n
′
1

∣∣∣∣
T ′

(m′1)

= (l23 − l22)
∂2w

∂t2
1

(m1) + l22
∂2w

∂t2
2

(m1)− l23
∂2w

∂t2
3

(m1)
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T

T
′

e1

e2

e3

e
′

1

e
′

2

e
′

3l2t2

l3t3

l
′

2
t
′

2

l
′

3
t
′

3

Figure 1. Two adjacent triangles T and T ′ with the common
edge e = e1 = e′1.

+ (l′23 − l′22 )
∂2w

∂t′21
(m′1) + l′22

∂2w

∂t′22
(m′1)− l′23

∂2w

∂t′23
(m′1).

Next we derive a similar formula for wI . Applying the identity (5) again and
then Lemma 3.1 on each edge ei (1 ≤ i ≤ 3) gives

4|T | ∂
2wI

∂t1∂n1

∣∣∣∣
T

= (l23 − l22)
∂2wI

∂t2
1

∣∣∣∣
T

+ l22
∂2wI

∂t2
2

∣∣∣∣
T

− l23
∂2wI

∂t2
3

∣∣∣∣
T

= (l23 − l22)
∂2w

∂t2
1

(m1) + l22
∂2w

∂t2
2

(m2)− l23
∂2w

∂t2
3

(m3).

Similarly, we obtain

4|T ′| ∂
2wI

∂t′1∂n
′
1

∣∣∣∣
T ′

= (l′23 − l′22 )
∂2w

∂t′21
(m′1) + l′22

∂2w

∂t′22
(m′2)− l′23

∂2w

∂t′23
(m′3).

With the abbreviation for the area-weighted average{
∂wI
∂ne

}
e

:=
|T |

|T |+ |T ′|
∂wI
∂ne

∣∣∣∣
T

+
|T ′|

|T |+ |T ′|
∂wI
∂ne

∣∣∣∣
T ′
,

it follows that

4(|T |+ |T ′|) ∂

∂te

{
∂wI
∂ne

}
e

(7)

= 4|T | ∂
2wI

∂t1∂n1

∣∣∣∣
T

+ 4|T ′| ∂
2wI

∂t′1∂n
′
1

∣∣∣∣
T ′

= (l23 − l22)
∂2w

∂t2
1

(m1) + l22
∂2w

∂t2
2

(m2)− l23
∂2w

∂t2
3

(m3)

+ (l′23 − l′22 )
∂2w

∂t′21
(m′1) + l′22

∂2w

∂t′22
(m′2)− l′23

∂2w

∂t′23
(m′3).
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Comparing (6) and (7), we can see that

∂2w

∂te∂ne
(me)−

∂

∂te

{
∂wI
∂ne

}
e

=
I2 − I3

4(|T |+ |T ′|)
,

where

I2 = l22
∂2w

∂t2
2

(m1)− l22
∂2w

∂t2
2

(m2) + l′22
∂2w

∂t′22
(m′1)− l′22

∂2w

∂t′22
(m′2),

I3 = l23
∂2w

∂t2
3

(m1)− l23
∂2w

∂t2
3

(m3) + l′23
∂2w

∂t′23
(m′1)− l′23

∂2w

∂t′23
(m′3).

Note that

I2 =
∑

1≤i,j≤2

{(
∂2w

∂xi∂xj
(m1)− ∂2w

∂xi∂xj
(m2)

)
t̃i2t̃

j
2

+

(
∂2w

∂xi∂xj
(m′1)− ∂2w

∂xi∂xj
(m′2)

)
t̃′i2 t̃
′j
2

}
,

where

t̃r = (t̃1r, t̃
2
r) = lrtr, t̃

′
r = (t̃′1r , t̃

′2
r ) = l′rt

′
r.

Since we have ∂2w
∂xi∂xj

∈ P1(T ∪ T ′), m1 −m2 = 1
2 t̃3 and m′1 −m′2 = 1

2 t̃
′
3, it

follows that

∂2w

∂xi∂xj
(m1)− ∂2w

∂xi∂xj
(m2) =

1

2

∑
1≤k≤2

∂3w

∂xi∂xj∂xk
t̃k3 ,

∂2w

∂xi∂xj
(m′1)− ∂2w

∂xi∂xj
(m′2) =

1

2

∑
1≤k≤2

∂3w

∂xi∂xj∂xk
t̃′k3 .

Consequently,

|I2| =
∣∣∣∣12 ∑

1≤i,j,k≤2

∂3w

∂xi∂xj∂xk
(t̃i2t̃

j
2t̃
k
3 + t̃′i2 t̃

′j
2 t̃
′k
3 )

∣∣∣∣
≤ 1

2
|w|3,∞,T∪T ′

∑
1≤i,j,k≤2

|t̃i2t̃
j
2t̃
k
3 + t̃′i2 t̃

′j
2 t̃
′k
3 |.

Using the estimates |̃tr + t̃
′
r| . h1+α

T and |̃tr| + |̃t
′
r| . hT , one can show that

for 1 ≤ i, j, k ≤ 2,

|t̃i2t̃
j
2t̃
k
3 + t̃′i2 t̃

′j
2 t̃
′k
3 | . h3+α

T ,

which results in

|I2| . h3+α
T |w|3,∞,T∪T ′ .

Similarly, we obtain

|I3| . h3+α
T |w|3,∞,T∪T ′ .
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These two results imply that∣∣∣∣ ∂2w

∂te∂ne
(me)−

∂

∂te

{
∂wI
∂ne

}
e

∣∣∣∣ . h1+α
T |w|3,∞,T∪T ′ .

Finally, following the last part of the proof of Lemma 7.1 in [13], we obtain∣∣∣∣ ∂∂te
{
∂wI
∂ne

}
e

− ∂

∂te

〈
∂wI
∂ne

〉
e

∣∣∣∣ ≤ | |T | − |T ′| |2(|T |+ |T ′|)

∣∣∣∣ ∂2wI
∂te∂ne

∣∣∣∣
T

− ∂2wI
∂te∂ne

∣∣∣∣
T ′

∣∣∣∣
. hαT · hT |w|3,∞,T∪T ′ = h1+α

T |w|3,∞,T∪T ′ .

This completes the proof. �

4. Asymptotic exactness of error estimator

In this section we assume that the triangulation Th is mildly structured in
the following sense (cf. [6, 9, 19]).

Condition (α, σ): There exists a partition of Th into two disjoint sets T1,h∪T2,h

and positive constants α, σ such that

• any two adjacent triangles T, T ′ ∈ T1,h form an O(h1+α
T ) approximate

parallelogram;

•
∑
T∈T2,h |T | . h

σ.

Under these conditions, the following superconvergence result was shown in [9]

(8) ‖∇(uI − uh)‖0,Ω . h2+ρ(‖u‖4,Ω + |u|3,∞,Ω),

where ρ = min(α, σ/2, 1/2) and uI denotes the moment-based quadratic inter-
polation of u.

Now we adapt the proofs of [8, 13] to establish the asymptotic exactness
of the error estimator η defined by (4) under the condition (α, σ). For given
w ∈ H2(Ω), we define an auxiliary function qw|T ∈ P0

3(T ) (similar to εT defined
by (3)) on each element T ∈ Th to be the solution of

(9) (∇qw,∇v)T = −(∆w, v)T +

∫
∂T

〈
∂wI
∂nT

〉
v ds− (∇wI ,∇v)T

for all v ∈ P0
3(T ). Using integration by parts leads to

(10) (∇qw,∇v)T = (∇(w − wI),∇v)T +

∫
∂T

(〈
∂wI
∂nT

〉
− ∂w

∂nT

)
v ds.

Taking v = qw, applying the Cauchy–Schwarz inequality and then using (2),
we obtain for w ∈ H3(ωT )

‖∇qw‖0,T . ‖∇(w − wI)‖0,T + h
1/2
T

∥∥∥∥〈 ∂wI∂nT

〉
− ∂w

∂nT

∥∥∥∥
0,∂T

,

and thus

(11) ‖∇(w − wI − qw)‖0,T ≤ ‖∇(w − wI)‖0,T + ‖∇qw‖0,T . h2
T |w|3,ωT
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by the standard interpolation estimates. In the following lemma this result is
strengthened when T lies in the interior of Ω1,h =

⋃
T∈T1,h T .

Lemma 4.1. Assume that T ∈ Th has no boundary edges and ωT ⊂ Ω1,h. If
u ∈ H4(ωT ), then we have

‖∇(u− uI − qu)‖0,T . h2+min(α,1)
T ‖u‖4,ωT

.

Proof. First we show that

(12) ‖∇(w − wI − qw)‖0,T . h2+α
T |w|3,ωT

∀w ∈ P3(ωT ).

Let ne = nT |e and te = tT |e, and write the equality (10) as

(13) (∇(w − wI − qw),∇v)T =
∑
e⊂∂T

∫
e

(
∂w

∂ne
−
〈
∂wI
∂ne

〉)
v ds.

For each edge e ⊂ ∂T parametrized by s ∈ [−le/2, le/2], where le is the length
of e, we consider the following Taylor expansions

∂w

∂ne

∣∣∣∣
e

=
∂w

∂ne
(me) + s

∂

∂te

(
∂w

∂ne

)
(me) +

s2

2

∂2

∂t2
e

(
∂w

∂ne

)
(me)

and 〈
∂wI
∂ne

〉
e

=

〈
∂wI
∂ne

〉
e

(me) + s
∂

∂te

〈
∂wI
∂ne

〉
e

.

Since v|e is odd about me for v ∈ P0
3(T ), it follows that∫

e

(
∂w

∂ne
−
〈
∂wI
∂ne

〉)
v ds =

(
∂2w

∂te∂ne
(me)−

∂

∂te

〈
∂wI
∂ne

〉
e

)∫
e

sv ds.

Consequently, by Lemma 3.2, the estimate (2) and the local inverse inequality,
we obtain∣∣∣∣ ∫

e

(
∂w

∂ne
−
〈
∂wI
∂ne

〉)
v ds

∣∣∣∣ . h1+α
T |w|3,∞,ωT

(∫ le/2

−le/2
s2 ds

)1/2

‖v‖0,e

. hαT |w|3,ωT
· h3/2

T · h1/2
T ‖∇v‖0,T .

This gives (12) by taking v = w − wI − qw in (13) (note that w − wI ∈ P0
3(T )

for w ∈ P3(T )).
Now choose φ ∈ P3(ωT ) such that ‖u − φ‖3,ωT

. hT ‖u‖4,ωT
(see [7] for

existence of such a polynomial). Then it follows from (11) and (12) that

‖∇(u− uI − qu)‖0,T ≤ ‖∇(u− φ− (u− φ)I − qu−φ)‖0,T
+ ‖∇(φ− φI − qφ)‖0,T

. h2
T |u− φ|3,ωT

+ h2+α
T |φ|3,ωT

. h2
T |u− φ|3,ωT

+ h2+α
T |φ− u|3,ωT

+ h2+α
T |u|3,ωT

. (h3
T + h2+α

T )‖u‖4,ωT
,

which proves the desired result. �
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In the following two theorems we present the main results of this paper.

Theorem 4.2. Assume that the triangulation Th satisfies the condition (α, σ).
Then we have with ρ = min(α, σ/2, 1/2)( ∑

T∈Th

‖∇(u− uh − εT )‖20,T
)1/2

. h2+ρ(‖u‖4,Ω + |u|3,∞,Ω).

Proof. We split u− uh − εT into three terms

u− uh − εT = (u− uI − qu) + (qu − εT ) + (uI − uh).

Let T̃1,h = {T ∈ Th : ∂T ∩ ∂Ω = ∅ and ωT ⊂ Ω1,h}. By Lemma 4.1 we obtain∑
T∈T̃1,h

‖∇(u− uI − qu)‖20,T . h4+2 min(α,1)‖u‖24,Ω,

while the estimate (11) and the condition (α, σ) lead to∑
T∈Th\T̃1,h

‖∇(u− uI − qu)‖20,T . h4
∑

T∈Th\T̃1,h

|u|23,ωT

. h4

( ∑
T∈Th\T̃1,h

|ωT |
)
|u|23,∞,Ω

. h4+min(σ,1)|u|23,∞,Ω.
Next we handle the second term for arbitrary T ∈ Th. By definitions (3) and
(9) we have for v ∈ P0

3(T )

(∇(qu − εT ),∇v)T = (∆(uI − uh), v)T −
1

2

∫
∂T

[[
∂(uI − uh)

∂nT

]]
v ds.

Then we use the estimate (2) and the local inverse inequalities to obtain

(∇(qu − εT ),∇v)T . ‖∆(uI − uh)‖0,T ‖v‖0,T +

∥∥∥∥[[∂(uI − uh)

∂nT

]]∥∥∥∥
0,∂T

‖v‖0,∂T

. ‖∇(uI − uh)‖0,ωT
‖∇v‖0,T ,

which gives by taking v = qu − εT
‖∇(qu − εT )‖0,T . ‖∇(uI − uh)‖0,ωT

.

By collecting the above results, it follows that( ∑
T∈Th

‖∇(u− uh − εT )‖20,T
)1/2

. h2+min(α,1)‖u‖4,Ω + h2+ 1
2 min(σ,1)|u|3,∞,Ω

+ ‖∇(uI − uh)‖0,Ω.
The proof is completed by invoking the superconvergence result (8). �

As a direct consequence of Theorem 4.2, we get the asymptotic exactness of
the error estimator η defined by (4).
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Theorem 4.3. Assume that the triangulation Th satisfies the condition (α, σ)
and the error ‖∇(u− uh)‖0,Ω is properly O(h2), i.e.,

‖∇(u− uh)‖0,Ω ≥ C1(u)h2

with some constant C1(u) > 0. Then we have with ρ = min(α, σ/2, 1/2)∣∣∣∣ η

‖∇(u− uh)‖0,Ω
− 1

∣∣∣∣ . hρ(‖u‖4,Ω + |u|3,∞,Ω)/C1(u).

Proof. By Theorem 4.2 we have∣∣‖∇(u− uh)‖0,Ω − η
∣∣ ≤ ( ∑

T∈Th

‖∇(u− uh)−∇εT ‖20,T
)1/2

. h2+ρ(‖u‖4,Ω + |u|3,∞,Ω),

and thus∣∣∣∣ η

‖∇(u− uh)‖0,Ω
− 1

∣∣∣∣ =

∣∣∣∣η − ‖∇(u− uh)‖0,Ω
‖∇(u− uh)‖0,Ω

∣∣∣∣ . h2+ρ(‖u‖4,Ω + |u|3,∞,Ω)

C1(u)h2
.

This completes the proof. �

5. Numerical results

In this section some numerical results are reported to illustrate the asymp-
totic exactness of the error estimator η. We solve the Poisson equation (1) with
the known exact solution u and the Dirichlet boundary condition is approxi-
mated using the quadratic interpolation of u|∂Ω.

Example 1. The first example is taken from [11] and is posed on the unit
square Ω = (0, 1)2 for which the exact solution is

u(x, y) = x4 + y4.

The initial triangulation is shown in the left of Fig. 2. Successive triangula-
tions are created by uniform refinement which divides every triangle into four
congruent subtriangles; see Fig. 2 for triangulations of refinement level 1 and 2.
It is well known that this uniform refinement makes the triangulations satisfy
the condition (α, σ) with α = 2 and σ = 1.

The numerical results are displayed in Table 1 which lists the values of the

H1 error ‖∇(u − uh)‖0,Ω, the error estimator η =
(∑

T∈Th ‖∇εT ‖
2
0,T

)1/2
and

the effectivity index θ = η/‖∇(u − uh)‖0,Ω. It is evident that θ tends to one
and thus η is asymptotically exact as the triangulation becomes more and more
refined. We remark that the effectivity indices of the error estimators presented
in [11] stay near 2.7 and 1.26 for P3 and P4 correction spaces, respectively.

Example 2. The second example is concerned with the singular solution

u(r, θ) = r
2
3 sin

2

3
θ
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Figure 2. Uniform triangulations of refinement levels 0, 1, 2
for Example 1

Table 1. H1 errors, error estimators and effectivity indices
for Example 1

level ‖∇(u− uh)‖0,Ω η θ

0 4.2377e–2 4.0091e–2 0.9461

1 1.0957e–2 1.0681e–2 0.9748

2 2.7942e–3 2.7606e–3 0.9880

3 7.0576e–4 7.0164e–4 0.9942

4 1.7736e–4 1.7685e–4 0.9971

5 4.4457e–5 4.4393e–5 0.9986

6 1.1129e–5 1.1121e–5 0.9993

on the L-shaped domain Ω = (−1, 1)2 \ [0, 1] × [−1, 0], where (r, θ) denotes
the polar coordinates. Starting with the initial triangulation shown in the
left of Fig. 3, we consider two sequences of triangulations by uniform and
adaptive refinement, respectively. The adaptive refinement is performed on
those triangles of Th (with some neighboring triangles to avoid hanging nodes)
such that

ηT >
1

2
max
T ′∈Th

ηT ′ , ηT = ‖∇εT ‖0,T .

Two of the triangulations generated during adaptive refinement are shown in
the middle and right of Fig. 3.

Fig. 4 plots the effectivity index θ = η/‖∇(u − uh)‖0,Ω with respect to the
number of unknowns. For comparison purpose we also display the effectivity
index of the error estimator η∗ of [11] using the P3 correction space larger
than η. It is observed that neither of η and η∗ is asymptotically exact on
uniform triangulations due to the singularity of u at the origin. But, when the
singularity is resolved by adaptive refinement, our error estimator η seems to
be asymptotically exact as the number of unknowns grows, while η∗ is not.
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Figure 3. Initial and two adapted triangulations for Example 2
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Figure 4. Effectivity indices on uniform and adapted trian-
gulations for Example 2

We remark that a possible explanation for this numerical observation may
be given using the theory of [18] which introduced the condition (α, σ, µ) to
deal with adaptive triangulations near the point singularity. However, it still
remains (at least theoretically) open whether adaptive refinement produces a
sequence of triangulations satisfying the condition (α, σ, µ) and thus further
investigation is necessary to explain the numerical results obtained above.
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