DOI QR코드

DOI QR Code

Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation

열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식

  • Kim, Tae-Kyung (Division of Electrical Engineering, Korea University of Technology and Education) ;
  • Park, Dae-Su (Division of Electrical Engineering, Korea University of Technology and Education) ;
  • Oh, Sung-Chul (Division of Electrical Engineering, Korea University of Technology and Education)
  • 김태경 (한국기술교육대학교 전기공학과) ;
  • 박대수 (한국기술교육대학교 전기공학과) ;
  • 오성철 (한국기술교육대학교 전기공학과)
  • Received : 2019.10.31
  • Accepted : 2020.03.06
  • Published : 2020.03.31

Abstract

Recently, research on renewable energy technologies has come into the spotlight due to rising concerns over the depletion of fossil fuels and greenhouse gas emissions. Demand for portable electronic and wearable devices is increasing, and electronic devices are becoming smaller. Energy harvesting is a technology for overcoming limitations such as battery size and usage time. In this paper, the V-I characteristic curve and internal resistance of thermal electric devices were analyzed, and MPPT control methods were compared. The Perturbation and Observation (P&O) control method is economically inefficient because two sensors are required to measure the voltage and current of a Thermoelectric Generator(TEG). Therefore, this paper proposes a new MPPT control method that tracks MPP using only one sensor for the regulation of the output voltage. The proposed MPPT control method uses the relationship between the output voltage of the load and the duty ratio. Control is done by periodically sampling the output voltage of the DC-DC converter to increase or decrease the duty ratio to find the optimal duty ratio and maintain the MPP. A DC-DC converter was designed using a cascaded boost-buck converter, which has a two-switch topology. The proposed MPPT control method was verified by simulations using PSIM, and the results show that a voltage, current, and power of V=4.2 V, I=2.5 A, and P=10.5 W were obtained at the MPP from the V-I characteristic curve of the TEG.

최근, 화석연료 고갈과 온실 가스 배출에 대한 우려가 높아지면서 신·재생 에너지 기술에 대한 연구가 주목을 받고 있다. 휴대용 전자기기 및 웨어러블 디바이스의 수요가 증가하고 IT기기들이 소형화되면서 배터리의 크기, 사용시간 등의 한계를 극복하기 위한 기술로 에너지 하베스팅이 있다. 본 논문에서는 열전소자의 V-I 특성곡선과 내부저항을 분석하고, 기존의 MPPT제어방식을 비교하였다. P&O제어방식은 열전소자의 전압, 전류를 측정하기 위한 센서 2개를 사용해야하기 때문에 경제적으로 비효율적이다. 따라서 본 논문에서는 출력전압 조절을 위한 센서1개만을 이용하여 MPP를 추적하는 새로운 MPPT제어방식을 제안한다. 제안하는 MPPT제어방식은 duty ratio와 부하의 출력전압의 관계를 이용하였으며, DC-DC Converter의 출력전압을 주기적으로 샘플링하여 duty ratio를 증가 또는 감소시켜 최적의 duty ratio를 찾아 MPP를 유지하도록 제어된다. DC-DC Converter는 Two-Switch 토폴로지인 Cascaded boost-Buck Converter를 이용하여 회로도를 설계하였다. 제안된 MPPT 제어방식은 PSIM 시뮬레이션을 이용한 모의실험을 통하여 검증하였고, 그 결과 열전소자의 V-I 특성곡선으로부터 얻어지는 MPP에서 전압×전류 및 전력값(V=4.2V, I=2.5A, P=10.5W)과 일치함을 확인하였다.

Keywords

References

  1. J. G. Park, S. H. Kim, "A Maximum Power Point Tracking circuit for Thermoelectric Generator using a Boost DC-DC converter", Journal of the Institute of Electronics Engineers of Korea, Vol.48, No.10, pp.15-19, Oct 2011.
  2. E. J. Yoon, S. J. Kim, K. Y. Park, W. S. Oh, C. G. Yu, "Design of a Thermal Energy Harvesting Circuit with MPPT Control", The Korean Institute of Communications and Information Sciences, Vol.16, No.4, pp.147-158, Nov 2012. DOI: http://dx.doi.org/10.6109/jkiice.2012.16.11.2487
  3. M. G. Jang, M. S. Jun, T. M. Roh, J. D. Kim, "Thermoelectric Power Generation with High Efficiency", Electronics and Telecommunications Research Institute, Vol.23, No.6, pp.12-21, Dec 2008. DOI: http://dx.doi.org/10.5916/jkosme.2012.36.1.51
  4. I. H. Kim, "Thermoelectric Energy Conversion Technology", Journal of Industrial and Engineering Chemistry, Vol.44, No.6, pp.18-26, 2013.
  5. H. Yamada, K. Kimura, T. Hanamoto, T. Ishiyama, T. Sakaguchi, T. Takahashi, "A Novel MPPT Control Method of Thermoelectric Power Generation with Single Sensor", IEEE 10th International Conference on PEDS, Vol.13, No.2, pp.545-558, April 2013. DOI: http://dx.doi.org/10.3390/app3020545
  6. E. J. Park, J. T. Park, C. D. Yu, "Thermoelectric Energy Harvesting Circuit Using DC-DC Boost Converter", Journal of IKEEE, Vol.17, No.3, pp.284-293, Sep 2013. DOI: http://dx.doi.org/10.7471/ikeee.2013.17.3.284
  7. H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, M. Rosset, "Efficient Power Management Circuit: From Thermal Energy Harvesting to Above-IC Micro battery Energy Storage", IEEE Solid-State Circuits Society, Vol.43, No.1, pp.246-255, Jan 2008. DOI: http://dx.doi.org/10.1109/JSSC.2007.914725
  8. R. Y. Kim, "A Seamless Mode Transfer Maximum Power Point Tracking Controller For Thermoelectric Generator on Power Electronics", IEEE Transaction On Power Electronics, Vol.23, No.5, pp.2310-2318, Sep 2008. DOI: http://dx.doi.org/10.1109/TPEL.2008.2001904
  9. T. K. Kim, D. S. Park, S. C. Oh, "Maximum Power Point Tracking operation of Thermoelectric Module without Current Sensor", Journal of Korea Academia-Industrial cooperation Society, Vol.18, No.9, pp.436-443, Aug 2017. DOI: http://dx.doi.org/10.5762/KAIS.2017.18.9.436
  10. Fu. M, Ma. C, Zhu. X, "A Cascaded Boost-Buck Converter for High-Efficiency Wireless power Transfer System", IEEE Transactions on industrial Informatics, Vol. 10, No. 3, pp. 1972-1908, Aug 2014. DOI: http://dx.doi.org/10.1109/TII.2013.2291682