DOI QR코드

DOI QR Code

Computational Simulation of Hydrocarbon Adsorption in a Packed Column

탄화수소 흡착 컬럼의 전산모사 특성

  • Yoo, Kyung-Seun (Department of Environmental Engineering, Kwangwoon University) ;
  • Lee, Su-Jung (Department of Environmental Engineering, Kwangwoon University) ;
  • Kim, Ji-Eun (Department of Environmental Engineering, Kwangwoon University)
  • 유경선 (광운대학교 환경공학과) ;
  • 이수정 (광운대학교 환경공학과) ;
  • 김지은 (광운대학교 환경공학과)
  • Received : 2019.11.05
  • Accepted : 2020.03.06
  • Published : 2020.03.31

Abstract

Computational simulations of adsorption columns were carried out to investigate the removal characteristics of VOCs from a laundry shop. n-Decane was selected as the representative component among the VOCs emitted, and the activity of the adsorbents, such as activated carbon, was evaluated using commercial CFD code. The mathematical framework was composed of continuity and Navier-stokes equations, and the simulation was performed using the Matlab program. The adsorption isotherms of LDF, Freundlich, and Langmuir were evaluated, and the adsorption amount of the adsorption isotherms with the adsorption parameter was compared. The simulation was carried out using a particle porosity, dispersion coefficient, particle density, bed diameter, and bed length of 0.79, 42.4 ㎠/min, 485 g/L, 2.0 cm, and 2.5 cm, respectively. The effect of the gas velocity, dispersion coefficient, and voidage on the adsorption amount was compared in the Langmuir adsorption isotherm. The simulation was carried out in the velocity range of 50 to 200 cm/min, dispersion coefficient range of 100 to 400 ㎠/min, and particle porosity range of 0.66 to 0.79. The simulation results of activated carbon with benzene coincided with the Langmuir isotherm. Three types of adsorption isotherm were compared under similar conditions, and the simulation results showed the efficient adsorption condition for hydrocarbons.

세탁시설에서 배출되는 탄화수소의 흡착제거 특성을 고찰하기 위하여 흡착 컬럼의 전산모사를 수행하였다. 흡착질은 세탁시설에서 배출되는 휘발성유기화합물 중 가장 대표적인 탄화수소를 선정하였으며 흡착제는 활성탄으로 전산모사를 수행하였다. 흡착컬럼의 수학적 방정식은 연속방정식과 Navier-Stokes 식을 적용하여 해석하였으며 Matlab 프로그램을 이용하여 미분방정식을 해석하였다. 흡착등온식은 선형흡착등온식, 프로인들리히 흡착등온식 그리고 랑뮈어 흡착등온식을 평가하였으며 흡착등온식의 흡착상수에 따른 흡착량을 비교하였다. 공극률은 0.79, 분산계수는 42.4 ㎠/min, 흡착제 밀도는 485 g/L, 흡착컬럼 직경은 2.0 cm, 흡착컬럼 길이는 2.5 cm라는 조건에서 전산모사를 수행하였다. 랑뮈어 흡착등온식에서 선속도, 분산계수, 공극률에 대한 흡착량의 영향을 비교하였다. 선속도는 50~200 cm/min, 분산계수는 100 ~400 ㎠/min, 공극률은 0.66~0.79로 변화시켜 수행하였다. 전산모사를 통한 결과는 활성탄-벤젠의 흡착에 대하여 랑뮈어 흡착등온식이 가장 잘 일치하였다. 동일한 조건에서 3가지의 흡착등온식을 비교한 후 전산모사를 통하여 탄화수소의 효율적인 흡착조건을 찾을 수 있으며 이를 고찰할 수 있다.

Keywords

References

  1. the Minisrty of Environment, Master Plans for Metropolitan Air Quality Control, Policy Report, the Minisrty of Environment, Korea, pp.23-36
  2. National Institute of Environmental Research, Guidelines for Estimating National Air Pollutant Emissions, Policy Report, National Institute of Environmental Research, Korea, pp.67-81
  3. S. S. Kim, J. H. Kim, S. W. Park, "Adsorption Analysis of Benzene Vapor in a Fixed-Bed of Granular Activated Carbon", Korean Chemical Engineering Research, Vol.47, No.4, pp.495-500, Aug. 2009.
  4. L. Song, Z. Sun, L. Duan, J. Gui, G. S. McDougall, "Adsorption and diffusion properties of hydrocarbons in zeolites", Microporous and Mesoporous Materials, Vol.104, No.1-3, pp.115-128, Aug. 2007. DOI: https://doi.org/10.1016/j.micromeso.2007.01.015
  5. P. Liu, H. Zhang, H. Xiang, Y. Yan, "Adsorption separation for high purity propane from liquefied petroleum gas in a fixed bed by removal of alkanes", Separation and Purification Technology, Vol.158, pp.1-8, Jan. 2016. DOI: https://doi.org/10.1016/j.seppur.2015.12.003
  6. D. Saha, N. Mirando, A. Levchenko, "Liquid and vapor phase adsorption of BTX in lignin derived activated carbon: Equilibrium and kinetics study", Journal of Cleaner Production, Vol.182, pp.372-378, May. 2018. DOI: https://doi.org/10.1016/j.jclepro.2018.02.076
  7. F. Gironi, V. Piemonte, "VOCs removal from dilute vapour streams by adsorption onto activated carbon", Chemical Engineering Journal, Vol.172, No.2-3, pp.671-677, Aug. 2011. DOI: https://doi.org/10.1016/j.cej.2011.06.034
  8. M. Fechtner, A. Kienle, "Efficient simulation and equilibrium theory for adsorption processes with implicit adsorption isotherms - Ideal adsorbed solution theory", Chemical Engineering Science, Vol.177, pp.284-292, Feb. 2018. DOI: https://doi.org/10.1016/j.ces.2017.11.028
  9. H. C. Shin, J. W. Park, K. Park, H. C. Song, "Removal characteristics of trace compounds of landfill gas by activated carbon adsorption", Environmental Pollution, Vol.119, No.2, pp.227-236, 2002. DOI: https://doi.org/10.1016/S0269-7491(01)00331-1
  10. K. J. Oh, D. W. Park, S. S. Kim, S. W. Park, "Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon", Korean Journal of Chemical Engineering, Vol.27, No.2, pp.632-638, Mar. 2010. DOI: https://doi.org/10.1007/s11814-010-0079-9
  11. M. S. Hussein, M. J. Ahmed, "Fixed bed and batch adsorption of benzene and toluene from aromatic hydrocarbons on 5A molecular sieve zeolite", Materials Chemistry and Physics, Vol.181, pp.512-517, Sep.2016. DOI: https://doi.org/10.1016/j.matchemphys.2016.06.088
  12. S. Kumagai, H. Ishizawa, Y. Toida, "Influence of solvent type on dibenzothiophene adsorption onto activated carbon fiber and granular coconut-shell activated carbon", Fuel, Vol.89, No.2, pp.365-371, Feb. 2010. DOI: https://doi.org/10.1016/j.fuel.2009.08.013
  13. C. L. Chuang, P. C. Chiang, E. E. Chang, "Modeling VOCs adsorption onto activated carbon", Chemosphere, Vol.53, No.1, pp.17-27, Oct. 2003. DOI: https://doi.org/10.1016/S0045-6535(03)00357-6
  14. A. Joly, A. Perrard, "Linear driving force models for dynamic adsorption of volatile organic compound traces by porous adsorbent beds", Mathematics and Computers in Simulation, Vol.79, No.12, pp.3492-3499, Aug. 2009. DOI: https://doi.org/10.1016/j.matcom.2009.04.011