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11. Introduction

One of the important goals in the study of group 
theory is to develop tools to compute the number of 
equivalence classes of a group action on a set. Among 
such tools, the first  is a result of Frobenius, but it was 
implicit in the work of Cauchy many years earlier than 
Frobenius and later given again by Burnside  in his 
pioneering book on group theory ([1]). We call the result 
Burnside's theorem.  

Since Burnside's theorem has been introduced, proofs 
of this result are mentioned in many books or papers. 
However, the explanations are relatively simple or they 
used sophisticated tools.

The purpose of this paper is to reinterpret the procedure 
of the theory development for easier understanding, and to 
get various useful results by applying this theorem.

In section 2, by using the stabilizer, we introduce a 
result to compute the number of equivalence classes. 
And then, as a deformation of it, we obtain Burnside's 
theorem.

In section 3, as applications of Burnside's theorem, we 
find out the numbers of different patterns in coloring 
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problems of various types of figures with symmetry and 
use them for computing the numbers of different kinds of 
chemical compounds.

In section 4, we study about the computation of the 
number of patterns using the cycle index.

We refer to the paper[1,2] for Burnside's theorem which 
has been studied in this context. For the study of group 
theory to compute the number of equivalence classes, we 
refer to[3,4,5], and[6,7,8] for other applications of counting 
problems.

2. Reinterpretation of Burnside’s theorem

Let  be a group and  ≠∅ a set. The function 
⋅  × → ,   ↦⋅  

is called an action on  if it satisfies the following two 
conditions : 

(i) ∀∈ ⋅  , where  is the identity of  
(ii) ∀ ∈ ∈ ⋅⋅  ⋅,

and if such an action on  is defined, we say that  acts 
on .  

Suppose  acts on a set ∅. Then the relation ∼  
on  defined by 

∼ ⇔    ⋅ (∈)
is an equivalence relation, and for ∈ the equivalence 
class of  is ∈  ∼  ∈    ⋅ ∈

 ⋅  ∈  and we denote it by .
Also, for ∈ if we put 

 ∈  ⋅  , the 
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stabilizer of , then the following two propositions are 
hold:

Proposition 1 If  acts on a set ∅, then   is a 
subgroup of . 

Proof Since ⋅  , ∈ 
∅. Suppose  ∈  . 

Then
⋅   ⋅  

and so
 ⋅   ⋅⋅   ⋅  .

Thus,  ∈ , and hence   is a subgroup of . ▪

Proposition 2 If a finite group  acts on a finite set 

∅, then    

  .

Proof We compare the numbers of elements of the two 
sets   ⋅｜∈｝and ＆｛｜∈｝.

Since  ⋅  ⋅ ⇔  ⋅   ⇔  ∈

⇔    the function    →＆ defined by 
⋅    is well defined and one-one correspondence. 
Thus∣∣∣＆∣, and so  

∣∣∣∣
∣∣ because∣＆∣∣∣

∣∣ . ▪

The preceding Proposition 2 yields the following 
result. 

Theorem 3 Suppose a finite group  acts on a finite 
set ∅ and the equivalence relation ∼  on  is 
defined by 

∼ ⇔    ⋅ (∈)
Then the number of elements in the set ∼ of all 

equivalence classes is 
∼  




∈

 , where 
 ∈  ⋅  .

Proof Assume that there are  equivalence classes 
 

  
⋯ 

 of . For each ∈ 
   

 Thus


∈ 


  

∈ 

 

 
 

∈ 




 
  ⋯

On the other hand,   
  



  is a disjoint union. 

Thus, from , 
∈

        ∼   . ▪

Using the above Theorem 3, to compute the number of 
∼, we have to get  for each element ∈ and 
add them all. However, in general, this computation is 
very cumbersome, and therefore, the above Theorem can 

be changed as follows:

Theorem 4 (Burnside's theorem, [1]) The number 
∼ as in Theorem 3 can be computed by

∼  



∈

Fix ,  

where Fix  ∈  ⋅  .

Proof Since 


∈


  ｛  ∈×∣⋅  ｝  

∈

∣Fix ∣

∼ ∣∣



∈

∣∣∣∣



∈

∣Fix∣. ▪

The method used in the proofs of Theorem 3 and 4 is 
different from that of the proofs stated in[1].

Using the above Burnside's theorem, we can compute 
the number of different patterns in coloring problems of 
figures with symmetry.

For example, if we consider a square as a figure in the 
space and let   be the total set of rotational replacements 
of this square in the space, 

         
makes a group and we call it the dihedral group of 
order 8.

  rotation,
     rotation 
Fig.  1. Elements of 

Now, let    ,    be the set of colors, and 
  

 
 

  be the set of 4-squares of × size 
chessboard to paint. We call the function    →  a 
coloring of . Let  be the set of all colorings of . 
Then the function 

⋅  ×  →     ↦ ⋅  ∘ 

is an action on the set  and the equivalence relation ∼ 
on the  as in Theorem 3 is defined. Here, let’s think that 
when the two elements of set  coincide by a proper 
rotational movement of  those two elements have the 
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same pattern. Then, we can compute the number of 
different patterns using Burnside's theorem because it is 
the same as the number of the set ∼ of all equivalence 
classes. Therefore, by Table 1 below, the number of 
different patterns is

∼  



∈

Fix 

 


 ⋅⋅ ⋅ 

∈        

Fix         

Table 1. Fix  of × chessboard

   
We see from the preceding example how coloring 

problems may be treated by using the Burnside's 
theorem.

3. Applications

In this section, using Burnside's theorem, we compute 
the numbers of different patterns in coloring of figures 
with various symmetries and use them to find out the 
numbers of different kinds of chemical compounds.

Theorem 5 If we paint each square of × size 
chessboard by duplicated choosing from  different 
colors, the number of different patterns is 
















    







    









   


,

where [ ] is the Gauss symbol. 

Proof We get Fix  of each element ∈    of 
dihedral group 

         as follows:  
First, if  is an even number, Fix  corresponding to 

each ∈  is as in Table 2.

∈        

Fix  





























  




  

Table 2. Fix  of × chessboard ( is even)

Therefore, the number of different patterns is

 

















  

.

Also, if  is an odd number, Fix  corresponding to 
each ∈  is as in Table 3.

∈    

Fix  




  




  




  

Table 3. Fix  of × chessboard ( is odd)

   




  




  




  




  

Therefore, the number of different patterns is 









  




  




  

.

So, by combining the above two cases, when we 
describe in general the number of different patterns of 
× size, we get the result of the theorem. ▪

The following is to solve the coloring problems in 
rectangle type figure that is not a square.

Theorem 6 If we paint each square of  ×  
size chessboard of by duplicated choosing from  
different colors, the number of different patterns is 








 ×  


 ×      ×






 


 ×    ×







 







     ×






 


 × 




 ×      ×






 


 



,

where [ ] is the Gauss symbol. 
Proof We can compute |Fix(g)| for each ∈ by 

classifying in 4 cases according to the positive integers 
  as follows; where       is the Klein's four 
group.

Case 1  and m are even numbers 

∈    

Fix  × 




 × 




 × 




 × 

Table 4. Fix  of × chessboard ( and  are even)
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  Case 2  is even, m is an odd number

∈    

Fix   × 



 × 




 × 




 ×   

Table 5. Fix  of × chessboard ( is even and  is 
odd)

Case 3  is odd, m is an even number

∈    

Fix   × 




 × 




   × 




 × 

Table 6. Fix  of × chessboard ( is odd and  is 
even)

  Case 4  and m are odd numbers

∈    

Fix   × 



 ×   




   × 




 ×   

Table 7. Fix  of × chessboard ( and  are odd)

Also, by combining the above four cases, Fix  
corresponding to each element of the group is as in 
Table 8.

∈  

Fix   × 




 ×      ×






 


 ×    ×







 




Table 8. Fix  of × chessboard 

 




     ×






 


 × 




 ×      ×






 




Therefore, the number of different patterns is 








 ×  


 ×      ×






 


 ×    ×







 







     ×






 


 × 




 ×      ×






 


 



. ▪

Theorem 7 If we paint each vertex of a regular 

-polygon by duplicated choosing from different  
numbers of colors, the number of different patterns is as 
follows:

(1) if  is even, 

   
  

  

     





  

 








(2) if  is odd, 

   
  

  

    


  

,

where   is the greatest common divisor of  and .
Proof Let     be the dihedral group of order .
(1) If  is an even number, we can compute Fix  

corresponding to each ∈ in as in Table 9.

Fig. 2. Elements of  ( is even)

∈    ≤ ≤

Fix     

Table 9. Fix  of -polygon group ( is even)


 ≤ ≤ 


 

 ≤≤ 







  






Therefore, the number of different patterns is 



   
  

  

     





  

 







.

(2) If  is an odd number, we can compute Fix  
corresponding to each ∈ in as in Table 10.

Fig. 3. Elements of  ( is odd)
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∈    ≤≤   ≤ ≤

Fix     




  

Table 10. Fix  of  polygon group ( is odd)

Therefore, the number of different patterns is 



   
  

  

    


  

. ▪

Theorem 8 If we spread  different things in a circle, 
the number of different patterns is .

Proof Let 
   ⋯   be the cyclic group 

of order . We can compute |Fix(g)| for each ∈  as in 
Table 11.

    ⋯   

 Fix      ⋯ 

Table 11. Fix  of the cyclic group 

 

Hence the number of different patterns is 




⋯ . ▪

Theorem 9 If we paint each face of a regular 
tetrahedron by duplicated choosing from different  
numbers of colors, the number of different patterns is 




  .

Proof There are 12 elements of the regular tetrahedron 
group as follows:
◦ identity movement 
◦ 4 kinds of 120rotational movement () on the axis 

passing the barycenter of the side opposite to the 
vertex

◦ 4 kinds of 240rotational movement () on the axis 
passing the barycenter of the side opposite to the 
vertex

◦ 3 kinds of 180rotational movement () on the axis 
connecting each opposite median points 

Also, we get Fix  for each element of the regular 
tetrahedron group as in Table 12.

Fig. 4. Elements of the regular tetrahedron group

  (4types)  (4types) (3types)

Fix     

Table 12. Fix  of a regular tetrahedron

Therefore, the number of different patterns is 




  . ▪

Theorem 10 If we paint each face of a regular 
hexahedron by duplicated choosing from different  
numbers of colors, the number of different patterns is 




    .

Proof There are 24 elements of the regular hexahedron 
group as follows:
◦ identity movement 
◦ ×   kinds of 

o, 
o , 

o   rotational 
movements on the rotational axis connecting the 
barycenter of the opposite sides

◦ ×   kinds of 
o , 

o   rotational 
movements on the rotational axis of a straight line 
connecting two opposite vertex 

◦ ×   kinds of 
o   rotational movements on 

the rotational axis of a straight line connecting median 
points of opposite edges

Fig. 5. Elements of the regular hexahedron group
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On the other hand, Fix  for each element of the 
regular hexahedron group is as in Table 13.

  (3types)  (3types)

Fix   

Table 13. Fix  of a cube

 (3types) (4types)  (4types) (6types)

   

Therefore, the number of different patterns is 




    . ▪

Theorem 11 If a chemical compound is compounded 
with the atoms such as Br, H, CH

 , C
H

  in four vertex 
on the axis of the middle carbon (C), and we call it 
organic compound, the number of different organic 
compounds is 36.
Proof  Let’s think it as a problem to compute the number 
of patterns for painting each vertex of a regular 
tetrahedron with Br, H, CH

 , C
H

 .

Fig. 6. Substitution of a figure for a chemical compound

We get Fix  for each element of the regular 
tetrahedron group of order 12 as in Table 14.

  (4types)  (4types) (3types)

Fix     

Table 14. Fix  of the organic compound

Therefore, there are 


 ⋅    of organic 

compounds. ▪
 
Theorem 12 A cyclobutane is a hydrocarbon that has 4 

carbon atoms and 2 hydrogen atoms are compounded in 
each carbon atom, and some of them have the structural 
formula described as the following picture. There are 23 
kinds of compounds that can be got by changing hydrogen 
to nitrogen from cyclobutane.

Fig. 7. Plane structure of cyclobutane

Proof Let’s think it as a problem to compute the 
number of patterns for painting each vertex of a cube that 
has 4 carbon atoms by choosing from hydrogen (H) and 
nitrogen (N).  

Fig. 8. Substitution of a figure for a cyclobutane 

On the other hand, if we paint each vertex of a cube 
choosing from 2 colors, Fix for each  element of the 
regular hexahedron group of order 24 is as in Table 15.

  (3types)  (3types)

Fix   

Table 15. Fix  of the cyclobutane

 (3types) (4types)  (4types) (6types)

   

Therefore, there are 


 ⋅ ⋅    kinds 

of compounds. ▪

Theorem 13 There are 138 kinds of isomers that can 
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change hydrogen atom into nitrogen or oxygen in a 
compound with a molecular formula as C

H
  seen in the 

following picture:

Fig. 9. Model of C
H



Proof Let’s think this problem as the one to compute 
the number of patterns for painting each vertex after 
choosing from atoms of hydrogen, nitrogen and oxygen 
with three carbon atoms inside a triangular prism as seen 
in the picture below.

Fig. 10. Substitution of the figure for C
H



On the other hand, a set that is made by the total 
rotational movements to make the following solid figure 
overlap with itself is the group         of 
order 6.

Fig. 11. Elements of 

Also, if we paint each vertex of triangular prism after 
choosing 3 colors, Fix for each 6 elements of the 
group is as in Table 16.

      

Fix      

Table 16. Fix  of isomers 

Therefore, there are 


 ⋅ ⋅    kinds 

of compounds. ▪

4. Computation of the Number of Patterns 
using the Cycle Index

Let   be the symmetric group of degree . For each 
∈ , if  is the product of   disjoint cycles of length 
  ⋯, then the cycle type of  is defined by 


 

 ⋯

 and denoted it by cycle type , where 


  



  . For instance, consider the permutation 

   in the symmetric group  . This 
permutation  has the cycle type 


 .

Let  be a subgroup of the symmetric group  . The 

cycle index of  is defined by  




∈

cycle type , 

and denoted it by  
 

 ⋯ 
[9].

In solving the problem of coloring the  objects as we 
studied before, if we regard  as a subgroup of   and 
use a cycle index of , we easily compute the number of 
patterns as the following theorem.

Theorem 14 If  has the cycle index 
 

 
 ⋯ 

 in the coloring problems by using 
 colors, then the number of different patterns is 
   ⋯ .   

Proof If ∈ has the cycle type 

 

 ⋯

, then 
Fix 

 
 ⋯

.
Thus the assertion is hold by Burnside’s theorem. ▪

Example 1 When we paint × chessboard by 
duplicated choosing from different  numbers of 
colors, if we think an element of      as that of   
and obtain the cycle index of ,  

 
 

 
 






 
 

 


, by Table 17. 
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Fig. 12. Elements of 

elements    

cycle type 
 

 
 



Table 17. Cycle types of × chase board

   




 


 


 




Hence the number of different patterns is 

      


 ⋅ ⋅ ⋅

  


   

Example 2 If we paint each face of a regular 
hexahedron by duplicated choosing from different  
numbers of colors, let’s determine the number of 
different patterns.

From Theorem 10, there are 24 elements of the regular 
hexahedron group , and each element has the cycle 
type as follows:   

elements  (3types)  (3types)

cycle type 
 

 




Table 18. Cycle types of the regular hexahedron for face 
painting

 (3types) (4types)  (4types) (6types)


 

 
 



Thus

 
 

 
 

  




 





 
 

,

and so the number of different patterns is

       


    
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