DOI QR코드

DOI QR Code

Improving effect of psoriasis dermatitis by yakuchinone A in the TNF-α stimulated HaCaT cells

TNF-α 자극에 활성화된 HaCaT 세포주에서 Yakuchinone-A에 의한 건선 피부염 개선 효과

  • Kim, Min Young (School of Cosmetic Science and Beauty Biotechnology, Semyung University) ;
  • Hwang, Hyung Seo (School of Cosmetic Science and Beauty Biotechnology, Semyung University)
  • Received : 2020.02.06
  • Accepted : 2020.03.11
  • Published : 2020.03.31

Abstract

Psoriasis is an autoimmune skin disease that is accompanied by hyper proliferation of the epidermis, erythema of various sizes, and ulceration. However, the mechanism of the development of psoriasis dermatitis is unclear. Recently, it is known that the inflammatory cytokines and Th17 cells as well as chemokine (CC motif) ligand 20 (CCL20) are involved in the process of keratinocytes hyper-differentiation, which is common in psoriasis dermatitis. Therefore, we studied the effects of yakuchinone-A, an active ingredient of Alpinia oxyphylla Miquel known for its anti-inflammatory activity, to improve psoriasis dermatitis. First, cytotoxicity of yakuchinone-A was observed in cell counting kit-8 assay and not observed in 10 ㎍/mL concentration on the human keratinocyte HaCaT cells. Yakuchinone-A in the presence of tumor necrosis factor-alpha (TNF-α) on HaCaT cells inhibited mRNA expression of IL-6, IL-8, and TNF-α by up to 61.4±7.5, 23.6±1.5, 46.0±4.8%. CCL20, a chemokine that attracts immune cells such Th17 cells to the inflammation location, was also significantly suppressed by yakuchinone-A. In addition, IκB and STAT3 phosphorylation involved in the CCL20 expression was inhibited by yakuchinone-A in a concentration-dependent manner up to the level of 79.1±5.0, 80.8±2.3%. Furthermore, yakuchinone-A downregulated CCL20 mRNA expression level on IL-17A-activated HaCaT cells as a concentration-dependent manner. Based on these results, yakuchinone-A is expected to be developed as a new material for improving psoriasis dermatitis in the future.

건선(psoriasis)은 인체 피부조직 중 표피의 과증식 및 다양한 크기의 홍반, 인설 등이 동반되는 난치성 자가면역 피부질환이다. 건선 피부염 발병 기작은 명확히 규명되지 않았으나 각질 형성세포의 과분화 과정에 관여하는 염증성 cytokine과 Th17 세포를 포함한 면역세포를 염증부위로 유인하는 chemokine (C-C motif) ligand 20 (CCL20)이 발병과정에 관여하는 것으로 알려진다. 따라서 건선치료에 효과적인 천연 소재를 발굴하기 위해 예로부터 항염증 활성이 알려진 익지인(Alpiniaoxyphylla Miquel)의 유효성분인 yakuchinone-A의 건선 피부염 개선효과를 연구하였다. 먼저 CCK-8 assay 통해 human keratinocyte (HaCaT) 세포에 tumor necrosis factor-alpha (TNF-α)와 yakuchinone-A를 동시 처리하여 세포독성을 관찰한 결과, yakuchinone-A는 10 ㎍/mL까지 세포독성이 관찰되지 않았다. TNF-α를 HaCaT 세포에 처리하여 염증을 유발한 후 yakuchinone-A를 농도별로 처리한 결과 IL-6, IL-8, TNF-α 등 건선 피부염 유발 cytokine의 mRNA 발현이 각각 61.4±7.5, 23.6±1.5, 46.0±4.8% 수준으로 감소하였고, Th17 세포를 유인하는 chemokine인 CCL20 또한 yakuchinone-A에 의해 유의적으로 억제되었다. 또한 CCL20 발현에 관여하는 NF-κB/IκB pathway에서 IκB 인산화 및 STAT3 인산화가 yakuchinone-A에 의해 79.1±5.0, 80.8±2.3% 수준만큼 농도 의존적으로 억제되었다. 마지막으로 Th17 세포에 의해 분비되는 IL-17A에 의해 활성화된 HaCaT 세포에 yakuchinone-A를 처리한 결과, CCL20 mRNA발현이 농도의존적으로 감소하였다. 이러한 결과들을 토대로 yakuchinone-A는 건선 피부염 개선 활성을 가지며, 향후 새로운 건선 피부염 개선 소재로 개발될 수 있을 것으로 기대된다.

Keywords

References

  1. Choi YM, Wu JJ (2015) Trends in the Frequency of Original Research in Acne Vulgaris, Rosacea, Dermatitis, Psoriasis, Skin Cancer, and Skin Infections, 1970-2010. Perm J 19: 44-47 https://doi.org/10.7812/TPP/14-104
  2. Michalek IM, Loring B, John SM (2017) A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol 31: 205-212 https://doi.org/10.1111/jdv.13854
  3. Liu Y, Lagowski JP, Gao S, Raymond JH, White CR, Kulesz-Martin MK (2010) Regulation of the psoriatic chemokine CCL20 by E3 ligases Trim32 and Piasy in keratinocytes. J Eur Acad Dermatol 130: 1384-1390
  4. Fitch E, Harper E, Skorcheva I, Kurtz SE, Blauvelt A (2007) Pathophysiology of psoriasis: recent advances on IL-23 and Th17 cytokines. Curr Rheumatol Rep 9: 461-467 https://doi.org/10.1007/s11926-007-0075-1
  5. Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu BM, Tato C, AkIhicoY, Hennighausen L, O'Shea JJ (2006) Selective regulatory function of Socs 3 in the formation of IL-17-secreting T cells. P Natl Acad Sci USA 103: 8137-8142 https://doi.org/10.1073/pnas.0600666103
  6. Stockinger B, Veldhoen M (2007) Differentiation and function of Th17 T cells. Curr Opin Immunol 19: 281-286 https://doi.org/10.1016/j.coi.2007.04.005
  7. Harper EG, Guo C, Rizzo H, Lillis JV, Kurtz SE, Skorcheva I, Purdy D, Fitch E, Lordanov M, Blauvelt A (2009) Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J Invest Dermatol 129: 2175-2183 https://doi.org/10.1038/jid.2009.65
  8. Kao CY, Huang F, Chen Y, Thai P, Wachi S, Kim C, Tam L, Wu R (2005) Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/$NF-{\kappa}B$-dependent signaling pathway. J Immunol 175: 6676-6685 https://doi.org/10.4049/jimmunol.175.10.6676
  9. Homey B, DieuNosjean MC, Wiesenborn A, Massacrier C, Pin JJ, Oldham E, Catron D, Buchanan ME, Muller A, Malefyt RD, Orozco R, Ruzicka T, Lehmann P, Lebecque S, CauxC, Zlotnik A, Deng G (2000) Up-regulation of macrophage inflammatory protein-$3{\alpha}$/CCL20 and CC chemokine receptor 6 in psoriasis. J Immunol 164: 6621-6632 https://doi.org/10.4049/jimmunol.164.12.6621
  10. Hirata T, Osuga Y, Takamura M, Kodama A, Hirota Y, Koga K, Yoshino O, Harada M, Yano T, Taketani Y (2010) Recruitment of CCR6- expressing Th17 cells by CCL 20 secreted from $IL-1{\beta}$-, $TNF-{\alpha}$-, and IL-17A-stimulated endometriotic stromal cells. Endocrinology 151: 5468-5476 https://doi.org/10.1210/en.2010-0398
  11. Kaser A, Ludwiczek O, Holzmann S, Moschen AR, Weiss G, Enrich B, Graziadei I, Dunzendorfer S, Wiedermann CJ, Murzl E, Jasarevic Z, Romani N, Offner FA, Tilg H, Grasl E (2004) Increased expression of CCL20 in human inflammatory bowel disease. J ClinImmunol 24: 74-85
  12. Demedts IK, Bracke KR, Van Pottelberge G, Testelmans D, Verleden GM, Vermassen FE, Joos GF, Brusselle GG (2007) Accumulation of dendritic cells and increased CCL20 levels in the airways of patients with chronic obstructive pulmonary disease. Am J Resp Crit Care 175: 998-1005 https://doi.org/10.1164/rccm.200608-1113OC
  13. Tzu J, Kerdel F (2008) From conventional to cutting edge: the new era of biologics in treatment of psoriasis. Dermatol Ther 21: 131-141 https://doi.org/10.1111/j.1529-8019.2008.00180.x
  14. Chang YM, Tsai CT, Wang CCR, Chen YS, Lin YM, Kuo CH, Tzang BS, Chen RJ, Tsai FT, Huang CY (2013) Alpinateoxyphyllaefructus (AlpiniaOxyphyllaMiq) extracts inhibit angiotensin-II induced cardiac apoptosis in H9c2 cardiomyoblast cells. Biosci Biotech Bioch 77: 229-234 https://doi.org/10.1271/bbb.120541
  15. Liu A, Zhao X, Li H, Liu Z, Liu B, Mao X, Guo L, Bi K, Jia Y (2014) 5-Hydroxymethylfurfural, an antioxidant agent from AlpiniaoxyphyllaMiq. improves cognitive impairment in $A{\beta}1$-42 mouse model of Alzheimer's disease. Int Immunopharmacol 23: 719-725 https://doi.org/10.1016/j.intimp.2014.10.028
  16. Lin RJ, Yen CM, Chou TH, Chiang FY, Wang GH, Tseng YP, Wang L, Huang TW, Wang HC, Chan LP, Liang CH, Ding HY (2013) Antioxidant, anti-adipocyte differentiation, antitumor activity and anthelminticactivities against Anisakis simplex and Hymenolepis nana ofyakuchinone A from Alpiniaoxyphylla. BMC Complem Altern M. dio: 10.1186/1472688213237
  17. Lee E, Park KK, Lee JM, Chun KS, Kang JY, Lee SS, Suerh YJ (1998) Suppression of mouse skin tumor promotion and induction of apoptosis in HL-60 cells by AlpiniaoxyphyllaMiquel (Zingiberaceae). Carcinogenesis 19: 1377-1381 https://doi.org/10.1093/carcin/19.8.1377
  18. Yu X, An L, Wang Y, Zhao H, Gao C (2003) Neuroprotective effect of AlpiniaoxyphyllaMiq.fruits against glutamate-induced apoptosis in cortical neurons. Toxicol Lett 144: 205-212 https://doi.org/10.1016/S0378-4274(03)00219-4
  19. Chang YM, Chang HH, Tsai CC, Lin HJ, Ho TJ, Ye CX, Chiu LP, Chen YS, Chen RJ, Huang CY, Lin CC (2017) AlpiniaoxyphyllaMiq.fruit extract activates IGFR-PI3K/Akt signaling to induce Schwann cell proliferation and sciatic nerve regeneration. BMC Complem Altern M. doi: 10.1186/s1290601716952
  20. Choi DH, Kim MR, Kim MY, Kim HH, Park SY, Hwang HS (2019) Studies on Antioxidant, Anti-inflammatory and Whitening Effects of Oriental Herbal Extracts (Mix) including Eucommiae cortex. J Soc Cosmet Scientists Korea 45: 37-47 https://doi.org/10.15230/SCSK.2019.45.1.37
  21. Qing ZJ, Yong W, Hui LY, Yong LW, Long LH, Ao DJ, Xia PL (2012) Two new natural products from the fruits of Alpiniaoxyphylla with inhibitory effects on nitric oxide production in lipopolysaccharideactivated RAW264.7 macrophage cells. Arch Pharm Res 35: 2143-2146 https://doi.org/10.1007/s12272-012-1211-7
  22. Flynn DL, Rafferty MF, Boctor AM (1986) Inhibition of 5-hydroxyeicosatetraenoic acid (5-HETE) formation in intact human neutrophils by naturally-occurring diarylheptanoids: inhibitory activities of curcuminoids and yakuchinones. Prosta Leukotr Med 22: 357-360 https://doi.org/10.1016/0262-1746(86)90146-0
  23. Chun KS, Kang JY, Kim OH, Kang H, Surh YJ (2002) Effects of yakuchinone A and yakuchinone B on the Phorbol ester-induced expression of COX-2 and iNOS and activation of $NF-{\kappa}B$ in mouse skin. J Environ Pathol Tox. doi: 10.1615/JenvironPatholToxicolOncol.v21.i2.60
  24. Jang S, Jung JC, Oh S (2007) Synthesis of 1, 3-diphenyl-2-propen-1-one derivatives and evaluation of their biological activities. Bioorgan Med Chem 15: 4098-4105 https://doi.org/10.1016/j.bmc.2007.03.077
  25. Huang KK, Lin MN, Hsu YL, Lu I, Pan I, Yang JL (2019) Alpiniaoxyphylla Fruit Extract Ameliorates Experimental Autoimmune Encephalomyelitis through the Regulation of Th1/Th17 Cells. Evid Based Compl Alt. doi: 10.1155/2019/6797030
  26. Choi DH, Hwang HS (2019) Anti-inflammation activity of brazilin in $TNF-{\alpha}$ induced human psoriasis dermatitis skin model. Appl Biol Chem. Doi: 10.1186/s137650190455z
  27. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M (1997) The $I{\kappa}B$ kinase complex (IKK) contains two kinase subunits, $IKK{\alpha}$ and $IKK{\beta}$, necessary for $I{\kappa}B$ phosphorylation and $NF-{\kappa}B$ activation. Cell 91: 243-252 https://doi.org/10.1016/S0092-8674(00)80406-7
  28. Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25: 821-852 https://doi.org/10.1146/annurev.immunol.25.022106.141557
  29. Mease PJ (2002) Tumour necrosis factor (TNF) in psoriatic arthritis: pathophysiology and treatment with TNF inhibitors. Ann Rheum Dis 61: 298-304 https://doi.org/10.1136/ard.61.4.298
  30. Ullah A, Johora FT, Sarkar B, Araf Y, Rahman H (2020) Curcumin analogues as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: A computer-based study. bioRxiv. doi: 10.1101/2020.01.27.921528