DOI QR코드

DOI QR Code

Undaria pinnatifida Fucoidan-Rich Extract Recovers Immunity of Immunosuppressed Mice

  • Lee, Hwan Hee (Department of Pharmacy, Duksung Women's University) ;
  • Cho, Yoo Jin (Department of Pharmacy, Duksung Women's University) ;
  • Kim, Gun-Hee (Department of Food and Nutrition, Duksung Women's University) ;
  • Cho, Hyosun (Department of Pharmacy, Duksung Women's University)
  • Received : 2019.08.14
  • Accepted : 2019.12.14
  • Published : 2020.03.28

Abstract

We investigated the immune restoration activity of Undaria pinnatifida fucoidan-rich extract in cyclophosphamide-induced immunosuppressed mice. C57BL/6 mice were intraperitoneally injected with 80 mg/kg of cyclophosphamide (CP) and orally administered with either drinking water (DW), red ginseng extract (RG), or one of three different doses of Undaria pinnatifida fucoidan-rich extract (DSU02 50, 100, and 150 mg/kg). After 14 days, liver, spleen, and whole blood were isolated from each animal. The frequencies of NK and CD3+, CD4+, and CD8+ T cells were significantly increased in splenocytes isolated from the DSU02 100 mg/kg and DSU02 150 mg/kg groups (NK1.1+, 5.4% or 4.9% vs 3.8%; CD3+, 39.3% or 37.9% vs 32.3%; CD4+, 22% or 20.2% vs 17.4%; CD8+, 12.7% or 11.6% vs 10.1%). NK cytotoxicity was enhanced in the DSU02-fed groups at all doses (CP-treated DW, 93.4%; RG, 107.2%; DSU02 50, 107.3%; DSU02 100, 107.3%; DSU02 150, 107.1%), and the proliferation of T cells (CD3+, CD4+, and CD8+) was also greater in the DSU02 100 mg/kg and DSU02 150 mg/kg administered groups compared with the unfed group. Plasma concentrations of TNF-α, IgM, and total IgG from the DSU02 150 mg/kg group were also significantly higher compared with the other groups (TNF-α: CP-treated DW - 21.5 pg/ml, DSU02 150 - 47.1 pg/ml; IgM: CP-treated DW - 82.9 ng/ml, DSU02 150 - 110.8 ng/ml; total IgG: CP-treated DW - 114.4 ng/ml, DSU02 150 - 162.7 ng/ml). We suggest that Undaria pinnatifida fucoidan-rich extract could be a promising candidate for a marine natural immune stimulator.

Keywords

References

  1. Brode S, Cooke A. 2008. Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide. Crit. Rev. Immunol. 28: 109-126. https://doi.org/10.1615/CritRevImmunol.v28.i2.20
  2. Colvin OM. 1999. An overview of cyclophosphamide development and clinical applications. Curr. Pharm. Des. 5: 555-560.
  3. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. 2015. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28: 690-714. https://doi.org/10.1016/j.ccell.2015.10.012
  4. Shirani K, Hassani FV, Razavi-Azarkhiavi K, Heidari S, Zanjani BR, Karimi G. 2015. Phytotrapy of cyclophosphamide-induced immunosuppression. Environ. Toxicol. Pharmacol. 39: 1262-1275. https://doi.org/10.1016/j.etap.2015.04.012
  5. Huyan XH, Lin YP, Gao T, Chen RY, Fan YM. 2011. Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c mice. Int. Immunopharmacol. 11: 1293-1297. https://doi.org/10.1016/j.intimp.2011.04.011
  6. Chirumbolo S. 2012. Plant phytochemicals as new potential drugs for immune disorders and cancer therapy: really a promising path? J. Sci. Food Agric. 92: 1573-1577. https://doi.org/10.1002/jsfa.5670
  7. Abuajah CI, Ogbonna AC, Osuji CM. 2015. Functional components and medicinal properties of food: a review. J. Food Sci. Technol. 52: 2522-2529. https://doi.org/10.1007/s13197-014-1396-5
  8. Maria IB, Anatolii IU. 2008. Structural analysis of fucoidans, Nat. Prod. Commun. 3: 1639-1648.
  9. Ponce NM, Pujol CA, Damonte EB, Flores ML, Stortz CA. 2003. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr. Res. 338: 153-165. https://doi.org/10.1016/S0008-6215(02)00403-2
  10. Maruyama H, Tamauchi H, Iizuka M, Nakano T. 2006. The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida sporophylls (Mekabu). Planta Med. 72: 1415-1417. https://doi.org/10.1055/s-2006-951703
  11. Lean QY, Eri RD, Fitton JH, Patel RP, Gueven N. 2015. Fucoidan extracts ameliorate acute colitis. PLoS One 10: e0128453. https://doi.org/10.1371/journal.pone.0128453
  12. Tzianabos AO. 2000. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin. Microbiol. Rev. 13: 523-533. https://doi.org/10.1128/CMR.13.4.523
  13. Kim SY, Joo HG. 2015. Evaluation of adjuvant effects of fucoidan for improving vaccine efficacy. J. Vet. Sci. 16: 145-150. https://doi.org/10.4142/jvs.2015.16.2.145
  14. Mathew L, Burney M, Gaikwad A, Nyshadham P, Nugent EK, Gonzalez A, et al. 2017 Preclinical evaluation of safety of fucoidan extracts from Undaria pinnatifida and Fucus vesiculosus for use in cancer treatment. Integr. Cancer Ther. 16: 572-584. https://doi.org/10.1177/1534735416680744
  15. Anisimova N, Ustyuzhanina N, Bilan M, Donenko F, Usov A, Kiselevskiy M, et al. 2017. Fucoidan and fucosylated chondroitin sulfate stimulate hematopoiesis in cyclophosphamide-induced mice. Mar. Drugs. 15. pii: E301.
  16. Anisimova NY, Ustyuzhanina NE, Bilan MI, Donenko FV, Ushakova NA, Usov AI, et al. 2018. Influence of modified fucoidan and related sulfated oligosaccharides on hematopoiesis in cyclophosphamide-induced mice. Mar. Drugs 16. pii: E333.
  17. Mak W, Wang SK, Liu T, Hamid N, Li Y, Lu J , et al. 2014. Anti-proliferation potential and content of fucoidan extracted from sporophyll of new Zealand Undaria pinnatifida. Front Nutr. 1: 9. https://doi.org/10.3389/fnut.2014.00009
  18. Lee HH, Kang H, Cho H. 2017. Recovery of NK(CD56+CD3-) cells after one year of tenofovir therapy for chronic Hepatitis B infection. J. Microbiol. Biotechnol. 27: 1204-1308. https://doi.org/10.4014/jmb.1701.01071
  19. Jin JO, Yu Q. 2015. Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils. Int. J. Biol. Macromol. 73: 65-71. https://doi.org/10.1016/j.ijbiomac.2014.10.059
  20. Teruya T, Tatemoto H, Konishi T, Tako M. 2009. Structural characteristics and in vitro macrophage activation of acetyl fucoidan from Cladosiphon okamuranus. Glycoconj J. 26: 1019-1028. https://doi.org/10.1007/s10719-008-9221-x
  21. Teruya T, Takeda S, Tamaki Y, Tako M. 2010. Fucoidan isolated from laminaria angustata var. longissima induced macrophage activation. Biosci.Biotechnol. Biochem. 74: 1960-1962. https://doi.org/10.1271/bbb.100294
  22. Vetvicka V, Vetvickova J. 2017. Fucoidans stimulate immune reaction and suppress cancer growth. Anticancer Res. 37: 6041-6046.
  23. Lee HH, Cho YJ, Yu D, Chung D, Kim GH, Kang H, et al. 2019. Undaria pinnatifida fucoidan-rich extract induces both innate and adaptive immune responses. Nat. Prod. Commun. 14: 1-8.
  24. Sanjeewa KK, Fernando IP, Kim EA, Ahn G, Jee Y, Jeon YJ. 2017. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells. Nutr. Res. Pract. 11: 3-10. https://doi.org/10.4162/nrp.2017.11.1.3
  25. Lee SH, Ko CI, Ahn G, You S, Kim JS, Heu MS , et al. 2012. Molecular characteristics and anti-inflammatory activity of the fucoidan extracted from Ecklonia cava. Carbohydr. Polym. 89: 599-606. https://doi.org/10.1016/j.carbpol.2012.03.056
  26. Zhang W, Oda T, Yu Q, Jin Jo. 2015. Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Mar. Drugs 13: 1084-1104. https://doi.org/10.3390/md13031084

Cited by

  1. Brown Seaweed Food Supplementation: Effects on Allergy and Inflammation and Its Consequences vol.13, pp.8, 2020, https://doi.org/10.3390/nu13082613
  2. Echinacea purpurea Alleviates Cyclophosphamide-Induced Immunosuppression in Mice vol.12, pp.1, 2020, https://doi.org/10.3390/app12010105
  3. Fucoidan Independently Enhances Activity in Human Immune Cells and Has a Cytostatic Effect on Prostate Cancer Cells in the Presence of Nivolumab vol.20, pp.1, 2020, https://doi.org/10.3390/md20010012