DOI QR코드

DOI QR Code

Determination of Flash Point for n-Octane+n-Nonane and n-Nonane+n-Decane Systems by Seta flash Apparatus

Seta flash 장치에 의한 n-Octane + n-Nonane계 및 n-Nonane + n-Decane계의 인화점 결정

  • Ha, Dong-Myeong (Dept. of Occupational Health and Safety Engineering, Semyung University) ;
  • Lee, Sungjin (Dept. of Clinical Laboratory Science, Semyung University)
  • 하동명 (세명대학교 보건안전공학과) ;
  • 이성진 (세명대학교 임상병리학과)
  • Received : 2020.10.15
  • Accepted : 2020.12.03
  • Published : 2020.12.31

Abstract

In order to guarantee safe storage and transportation of a flammable liquid solution, it is very important to know its flash point information. In this paper, flash points of n-octane+n-nonane system and n-nonane+n-decane system were measured by Seta flash apparatus and an empirical equation is proposed for the accurate estimation of flash point. Empirical equation is used to predict flash point of n-octane+n-nonane system and n-nonane+n-decane system, which were also compared to Unifac-based model. Absolute average errors of flash point data predicted by Unifac-based model are 0.7℃ and 0.6℃ for n-octane+n-nonane system and n-nonane+n-decane system, respectively. Absolute average errors of flash point data predicted by empirical equation are 0.2℃ and 0.4℃ for n-octane+n-nonane system and n-nonane+n-decane system, respectively. In conclusion, empirical equation proposed in this paper, presented the most satisfactory.

인화성 액체 용액을 안전하게 저장하고 운반하기 위해서는, 인화점 정보를 알고 있는 것이 매우 중요하다. 이 논문에서는 n-octane+n-nonane 계와 n-nonane+n-decane 계의 인화점을 Seta flash 장치로 측정하였으며, 인화점을 정확하게 예측하기 위한 경험식을 제시한다. 경험식은 n-octane+n-nonane 계와 n-nonane+n-decane 계의 인화점을 예측하기 위해 사용되었으며, 또한 Unifac 식에 기반을 둔 계산 모델과 비교하였다. Unifac 식을 이용한 예측 결과의 절대평균오차는 n-octane+n-nonane 계의 경우 0.7℃였고, n-nonane+n-decane 계의 경우 0.6℃이었다. 경험식에 의한 예측값의 절대평균오차는 n-octane+n-nonane 계의 경우 0.2℃였고, n-nonane+n-decane 계의 경우 0.4℃이었다. 결론적으로, 본 논문에서 제시된 경험식은 매우 만족한 결과를 나타내었다.

Keywords

References

  1. Vidal, M., Rogers, W.J., Holste, and J.C., Mannan, M.S., "A Review of Estimation Methods for Flash Points and Flammability Limits", Process Saf. Prog., 23, 47-55, (2004) https://doi.org/10.1002/prs.10004
  2. Valenzuela, E.M., Román, R.V., Patel, S., and Mannan, M.S., "Prediction Models for the Flash Point of Pure Components", J. Loss Prev. Process Ind., 24, 753-757, (2011) https://doi.org/10.1016/j.jlp.2011.04.010
  3. Lance, R.C., Barnard, A.J., and Hooymanm, J.E., "Measurement of Flash Points : Apparatus, Methodology, Applications", J. of Hazardous Materials, 3, 107-119, (1979) https://doi.org/10.1016/0304-3894(79)85008-6
  4. Moghaddam, A.Z., Rafiei, A., and Khalili, T., "Assessing Prediction Models on Calculating the Flash Point of Organic Acid, Ketone and Alcohol Mixtures", Fluid Phase Equilib, 316, 117-121, (2012) https://doi.org/10.1016/j.fluid.2011.12.014
  5. Hristova, M., and Damgaliev, D., "Flash Point of Organic Binary Mixtures Containing Alcohols: Experiment and Prediction", Cent. Eur. J. Chem., 11, 388-393, (2013) https://doi.org/10.2478/s11532-012-0171-6
  6. Ha, D.M., and Lee, S.J. Lee, "Dew Point Prediction by Lower Flash Points of Binary Mixtures", J. of the Korean Society of Safety, 32(6), 34-39, (2017) https://doi.org/10.14346/JKOSOS.2017.32.6.34
  7. Affens, W.A., and Mclaren, G.W., "Flammability Properties of Hydrocarbon Solutions in Air", J. of Chem. Ind. Eng. Chem. & Eng. Data, 17(4), 482-488, (1972) https://doi.org/10.1021/je60055a040
  8. White, D., Beyler, C.L., Fulper, and C., Leonard, J., "Flame Spread on Aviation Fuels", Fire Saf. J., 28, 1-31, (1997) https://doi.org/10.1016/S0379-7112(96)00070-7
  9. Hanley, B, "A Model for the Calculation and the Verification of Closed Cup Flash Points for Multicomponent Mixtures", Process Saf. Prog., 17(2), 86-97, (1998) https://doi.org/10.1002/prs.680170204
  10. Poling, B.E., Prausnitz, J.M., and O'Connell, J. P., "The Properties of Gases and Liquids", 5th Ed., McGraw-Hill, New York, (2001)
  11. Liaw, H.J., Lee, Y.H., Tang, C.L., Hsu, H.H., and Liu, J.H., "A Mathematical Model for Predicting the Flash Point of Binary Solutions", J. of Loss Prevention in the Process Industries, 15, 429-438, (2002) https://doi.org/10.1016/S0950-4230(02)00068-2
  12. Le Chatelier, "Esimation of Firedamp by Flammability limits", Ann. Minmes, 19, 388-392, (1891)
  13. Poling, B.E., Prausnitz, J.M., and O'Connell, J. P., "The Properties of Gases and Liquids", 5th Ed., McGraw-Hill, New York, (2001)
  14. Ha, D.M., and Lee, S.J., "The Measurement and Prediction of Maximum Flash Point Behavior for Binary Solution", Fire Sci. Eng., 27(5), 1-5, (2013) https://doi.org/10.7731/KIFSE.2013.27.5.1
  15. In 2011 Annual Book of ASTM Standards ; ASTM International, 2011, Standard Test Methods for Flash Point of Liquids by Small Scale Closed-Cup Apparatus(ASTM D3278), West Conshohocken, PA, (2011)
  16. Gmehing, J., Onken, U., and Arlt, W., Vapor-Liquid Equilibrium Data Collection, 1, Part1-Part7, DECHEMA, (1980)
  17. Caoire, L., Paulmier, S., and Naudet, V., "Estimation of Closed Cup Flash Points of Combustible Solvent Blends", J. Phy. Chem. Ref. Data, 35(1), 9-14, (2006) https://doi.org/10.1063/1.1928236
  18. Kim, S.Y., Lee, B.S., Chung, C.B., and Choi, S.H., "Prediction of Flash Point of Binary Systems by Using Multivariate Statistical Analysis", KIGAS, 10(4), 29-33, (2006)
  19. Vidal, M., Rogers, W.J., and Mannan, M.S., "Prediction of Minimum Flash Behaviour for Binary Mixtures", Process Safety and Environmental Protection, 84, 1-9, (2006) https://doi.org/10.1205/psep.05041
  20. Lee, C.J., Ko, J.W., and Lee, G., "Flash point prediction of organic compounds using a group contribution and support vector machine", Korea J. Chem. Eng., 29, 145-153, (2012) https://doi.org/10.1007/s11814-011-0164-8