DOI QR코드

DOI QR Code

Development of a DEVS Simulator for Electronic Warfare Effectiveness Analysis of SEAD Mission under Jamming Attacks

대공제압(SEAD) 임무에서의 전자전 효과도 분석을 위한 DEVS기반 시뮬레이터 개발

  • Received : 2020.09.25
  • Accepted : 2020.10.27
  • Published : 2020.12.31

Abstract

The purpose of Electronic warfare is to disturbe, neutralize, attack, and destroy the opponent's electronic warfare weapon system or equipment. Suppression of Enemy Air Defense (SEAD) mission is aimed at incapacitating, destroying, or temporarily deteriorating air defense networks such as enemy surface-to-air missiles (SAMs), which is a representative mission supported by electronic warfare. This paper develops a simulator for analyzing the effectiveness of SEAD missions under electronic warfare support using C++ language based on the DEVS (Discrete Event Systems Specification) model, the usefulness of which has been proved through case analysis with examples. The SEAD mission of the friendly forces is carried out in parallel with SSJ (Self Screening Jamming) electronic warfare under the support of SOJ (Stand Off Jamming) electronic warfare. The mission is assumed to be done after penetrating into the enemy area and firing HARM (High Speed Anti Radiation Missile). SAM response is assumed to comply mission under the degraded performance due to the electronic interference of the friendly SSJ and SOJ. The developed simulator allows various combinations of electronic warfare equipment specifications (parameters) and operational tactics (parameters or algorithms) to be input for the purpose of analysis of the effect of these combinations on the mission effectiveness.

전자전은 상대방 전자전 무기체계나 장비에 대한 교란, 무력화, 공격 및 파괴를 목적으로 한다. 대공제압(SEAD: Suppression of Enemy Air Defense) 임무는 적의 방공망에 대한 무력화, 파괴, 혹은 일시적 기능 저하를 목적으로 하며, 전자전을 수행하는 대표적인 임무이다. 본 연구는 SEAD 임무의 효과도 분석을 위하여 DEVS(Discrete Event Systems Specification) 기반의 시뮬레이터를 개발하고 사례 분석을 통해 유용성을 입증한다. SEAD 임무는 SSJ(Self Screening Jamming), SOJ(Stand Off Jamming) 상황 하에서 적 지역으로 침투하여 HARM(High Speed Anti Radiation Missile)을 발사하는 단계까지로 한다. SAM의 대응은 SSJ, SOJ에 의해 성능의 저하가 초래되는 상태에서 임무를 수행하는 것으로 가정한다. 시뮬레이터는 전자전 장비의 제원(파라미터)과 운용전술(파리미터 혹은 알고리즘)의 조합이 임무효과도에 미치는 영향을 분석하는 것을 목적으로 하였다.

Keywords

Acknowledgement

본 연구는 국방과학연구소(과제명: 모델기반 전자전체계설계분석기술)의 지원을 받아 수행한 연구 결과입니다. 보안상 장비제원은 실제원과 다를 수 있음을 고지합니다.

References

  1. Barton, D. K. (2013) Radar Equations for Modern Radar, Artech House.
  2. Blum (2004) "A Game-Theoretic Analysis of Electronic Warfare Tatics with Applications to the World War II Era," MS Thesis, MIT.
  3. Bolkcom and Christopher (2005) "Military Suppression of Enemy Air Defences (SEAD): Assessing Future Needs", In Library of US Congress. Washington DC, 2005. Available from www.dtic.mil; Internet.
  4. G. Richard Curry (2005) Radar System Performance Modeling, Artech House.
  5. Joint Publication, (2012) Electronic Warfare, Joint Publication 3-13.1, 08 February 2012.
  6. Kim, T.G. (2018) 국방 모델링 시뮬레이션, 한티미디어
  7. Kim, J. H. and T. G. Kim (2006) "Parametric Behavior Modeling Framework for War Game Models Development Using OO Co-Modeling Methodology", 2006 Sping Simulation MultiConf., Huntsville, USA, pp. 69-75.
  8. Kim, T. G., C. H. Sung, S. Y. Hong, J. H. Hong, C. B. Choi, J. H. Kim, K. M. Seo, and J. W. Bae (2011) "DEVSim++ Toolset for Defense Modeling and Simulation and Interoperation", The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 8(3), 129-142. https://doi.org/10.1177/1548512910389203
  9. Kwon, S. J., B. G. Kang, C. B. Choi, and T. G. Kim (2020) "Adaptive Discrete Event Simulation Systems to Embrace Changes of Requirements Using Event Control Models," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(3), 1147-1160. https://doi.org/10.1109/tsmc.2017.2747604
  10. Mahafza, B. R. and Z. E. Atef, (2004) MATLAB Simulations for Radar Systems Design, CHAPMAN & HALL/CRC.
  11. Naval Air Warfare Center Weapons Division, (2013) Electronic Warfare and Radar Systems, Engineering Handbook.
  12. Sadoon, S. H. M., B. H. Elias (2013) "Radar theoretical study: minimum detection range and maximum signal to noise ratio (SNR) equation by using MATLAB simulation program," American Journal of Modern Physics, 2(4), 234-241. https://doi.org/10.11648/j.ajmp.20130204.20
  13. Seo, J. J. (2018) "Analysis of Tracking Accuracy with Consideration of Fighter Radar Measurement Characteristics," The Journal of Korean Institute of Electromagnetic Engineering and Science, 29(8), 640-647. https://doi.org/10.5515/KJKIEES.2018.29.8.640
  14. Seo, K. M., C. B. Choi, T. G. Kim, and J. H. Kim, (2014) "DEVS-based combat modeling for engagement-level defense simulation," SIMULATION: Transaction of The Society for Modeling and Simulation International, 90(7), 759-781. https://doi.org/10.1177/0037549714532960
  15. Seo, K. M., W. Y. Hong, and T. G. Kim (2017) "Enhancing model composability and reusability for entity-level combat simulation: A conceptual modeling approach," SIMULATION: Transaction of The Society for Modeling and Simulation International, 93(10), 825-840 https://doi.org/10.1177/0037549717699872
  16. Song, H. S. (2018) "Implementation and Static Verification Methodology of Discrete Event Simulation Software based on the DEVS Diagram: A Practical Approach," Journal of the Korea Society for Simulation, 27(3), 23-36. https://doi.org/10.9709/JKSS.2018.27.3.023
  17. Sung, C. H. and T. G. Kim (2012) "Collaborative Modeling Process for Development of Domain-Specific Discrete Event Simulation Systems," IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews, 42(4), 532-546. https://doi.org/10.1109/TSMCC.2011.2135850
  18. Qi and Wang (2014) "Effectiveness evaluation of electornic warfare command and control system based on grey AHP method," Journal of Chemical and Pharmaceutical Research, 6(7), 535-542.
  19. Zeigler, B. P. and T. G. Kim (2000) Theory of Modeling and Simulation (2ndEd.), Academic Press.