DOI QR코드

DOI QR Code

An Efficient Disease Inspection Model for Untrained Crops Using VGG16

VGG16을 활용한 미학습 농작물의 효율적인 질병 진단 모델

  • Received : 2020.08.03
  • Accepted : 2020.09.16
  • Published : 2020.12.31

Abstract

Early detection and classification of crop diseases play significant role to help farmers to reduce disease spread and to increase agricultural productivity. Recently, many researchers have used deep learning techniques like convolutional neural network (CNN) classifier for crop disease inspection with dataset of crop leaf images (e.g., PlantVillage dataset). These researches present over 90% of classification accuracy for crop diseases, but they have ability to detect only the pre-trained diseases. This paper proposes an efficient disease inspection CNN model for new crops not used in the pre-trained model. First, we present a benchmark crop disease classifier (CDC) for the crops in PlantVillage dataset using VGG16. Then we build a modified crop disease classifier (mCDC) to inspect diseases for untrained crops. The performance evaluation results show that the proposed model outperforms the benchmark classifier.

농작물 질병에 대한 조기 진단은 질병의 확산을 억제하고 농업 생산성을 증대하는 데에 있어 중요한 역할을 하고 있다. 최근 합성곱신경망(convolutional neural network, CNN)과 같은 딥러닝 기법을 활용하여 농작물 잎사귀 이미지 데이터세트를 분석하여 농작물 질병을 진단하는 다수의 연구가 진행되었다. 이와 같은 연구를 통해 농작물 질병을 90% 이상의 정확도로 분류할 수 있지만, 사전 학습된 농작물 질병 외에는 진단할 수 없다는 한계를 갖는다. 본 연구에서는 미학습 농작물에 대해 효율적으로 질병 여부를 진단하는 모델을 제안한다. 이를 위해, 먼저 VGG16을 활용한 농작물 질병 분류기(CDC)를 구축하고 PlantVillage 데이터세트을 통해 학습하였다. 이어 미학습 농작물의 질병 진단이 가능하도록 수정된 질병 분류기(mCDC)의 구축방안을 제안하였다. 실험을 통해 본 연구에서 제안한 수정된 질병 분류기(mCDC)가 미학습 농작물의 질병진단에 대해 기존 질병 분류기(CDC)보다 높은 성능을 보임을 확인하였다.

Keywords

References

  1. Chollet, F., Deep Learning with Python, Manning Publications, Inc. USA, 2017.
  2. Ferentinos, K.P., "Deep Learning Models for Plant Disease Detection and Diagnosis", Comput. Electron. Agric. Vol. 145, pp. 311-318, 2018. https://doi.org/10.1016/j.compag.2018.01.009
  3. He, K., Zhang, X., Ren, S., and Sun, J., Deep "Residual Learning for Image Recognition", Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.
  4. Huang, T., Yang, R., Huang, W., Huang, Y., and Qiao, X., "Detecting Sugarcane Borer Diseases Using Support Vector Machine". Inf. Process. Agric. Vol. 5, No. 1, pp. 74-82, 2018. https://doi.org/10.1016/j.inpa.2017.11.001
  5. Khamparia1, A., Saini1, G., Gupta, D., Khanna, A., Tiwari, S., and Albuquerque, V. H. C., "Seasonal Crops Disease Prediction and Classification Using Deep Convolutional Encoder Network", Circuits, Systems, and Signal Processing, Vol. 39, pp. 818-836, 2020. https://doi.org/10.1007/s00034-019-01041-0
  6. Krizhevsky, A., Sutskever, I., and Hinton, G.E., "Imagenet Classification with Deep Convolutional Neural Networks", Proc. of the Advances in Neural Information Processing Systems, pp. 1097-1105, 2012.
  7. LeCun, Y., Bottou, L., Bengio, Y., and Haner, P., "Gradient-based Learning Applied to Document Recognition", Proc. IEEE, Vol. 86, pp. 2278-2324, 1998. https://doi.org/10.1109/5.726791
  8. Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-Barredo, A., Echazarra, J., and Johannes, A., "Deep Convolutional Neural Networks for Mobile Capture Device-based Crop Disease Classification in the Wild". Comput. Electron. Agric. Vol. 138, pp. 200-209, 2018. https://doi.org/10.1016/j.compag.2017.04.013
  9. Saleem, M. H., Potgieter, J., and Arif, K. M., "Plant Disease Detection and Classification by Deep Learning, Plants", Vol. 8, pp. 468-490, 2019. https://doi.org/10.3390/plants8110468
  10. Simonyan, K. and Zisserman, A., "Very Deep Convolutional Networks for Large-scale Image Recognition", Proc. ICLR, 2015.
  11. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D, and Stefanovic, D., "Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification", Computational Intelligence and Neuroscience, Vol. 2016, Article ID 3289801.