DOI QR코드

DOI QR Code

Preparation of Porous Cobalt Thin Films by Using an Electrochemical Method

전기화학적 방법을 통한 다공성 코발트 박막 합성

  • Ha, Seong-Hyeok (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • Received : 2020.11.25
  • Accepted : 2020.12.28
  • Published : 2020.12.31

Abstract

Morphology of porous cobalt electro-deposits was systematically investigated as functions of cobalt precursors in the plating bath and applied cathodic current density with a special focus on cobalt nano-rod formation. It was proved that the concentration of cobalt precursor plays little effect on the morphology of cobalt electro-deposits at relatively low plating current density while it significantly affects the morphology with increasing plating current density. Such a dependence was discussed in terms of the kinetics of two competitive reactions of cobalt reduction and hydrogen evolution. Cobalt nano-rod structure was created at specific ranges of cobalt precursor content and applied cathodic current density, and its diameter and length varied with plating time without notable formation of side branches which is usually found during dendrite formation. Specifically, the nano-rod length was preferentially increased in relative short plating time (<15 s), resulting in higher aspect ratio of nano-rod with plating time. Whereas, both the nano-rod length and diameter were increased nearly at the same level in a prolonged plating time, making the aspect ratio unchanged. From the analysis of crystal structure, it was confirmed that the cobalt nano-rod preferentially grew in the form of single crystal on a dense poly-crystalline cobalt thin film initially formed on the substrate.

Keywords

References

  1. A. Frenk and W. Kurz, Microstructural effects on the sliding wear resistance of a cobalt-based alloy, Wear, 174 (1994) 81-91. https://doi.org/10.1016/0043-1648(94)90089-2
  2. E. C. Yang and D. N. Hendrickson, Cobalt single-molecule magnet, J. Appl. Phys. 91 (2002) 7382. https://doi.org/10.1063/1.1450813
  3. S. J. Kim, E. J. Kim, M. Liu and H. C. Shin, Cobalt oxide nanorods prepared by a template-free method for lithium battery application, J. Electrochem. Sci. Technol, 7 (2016) 206-213. https://doi.org/10.5229/JECST.2016.7.3.206
  4. E. Rebmann, P. Fongarland, V. Lecocq, F. Diehl and Y. Schuurman, Measurement of the Influence of the Microstructure of Alumina-Supported Cobalt Catalysts on their Activity and Selectivity in Fischer-Tropsch Synthesis by using Steady-State and Transient Kinetics, ChemCatChem, 9 (2017) 2344-2351. https://doi.org/10.1002/cctc.201700078
  5. J. Deng, L. Kang, G. Bai, Y. Li. P. Li, X. Liu, Y. Tang, F. Gao, W. Liang, Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials, Electrochim. Acta 132 (2014) 127-135. https://doi.org/10.1016/j.electacta.2014.03.158
  6. W. Y. Li, L. N. Xu, J. Chen, Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater, 15 (2005) 851-857. https://doi.org/10.1002/adfm.200400429
  7. Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong and J. H. Liu, Metal oxide nanostructures and their gas sensing properties: a review, Sensors, 12 (2012) 2610-2631. https://doi.org/10.3390/s120302610
  8. R. Qiu, J. Y. Zheng, H. G. Cha, M. H. Jung, K. J. Lee and Y. S. Kang, One-dimensional ferromagnetic dendritic iron wire array growth by facile electrochemical deposition, Nanoscale, 4 (2012) 1565-1567. https://doi.org/10.1039/c2nr11780k
  9. D. Wang, Q. Wang, T. Wang, Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors, Inorganic Chemistry, 50 (2011) 6482-6492. https://doi.org/10.1021/ic200309t
  10. H. Park, K. Kim, K. Jeong, J. S. Kang, H. H. Cho, B. Thirumalraj, Y. E. Sung, H. N. Han, J. H. Kim, D. C. Dunand and H. Choe, Integrated Porous Cobalt Oxide/Cobalt Anode with Micro/Nano-Hybrid Pores for Lithium Ion Battery, Applied Surface Science, 525 (2020) 146592. https://doi.org/10.1016/j.apsusc.2020.146592
  11. P. G. Schiavi, P. Altimari, A. Rubino and F. Pagnanelli, Electrodeposition of cobalt nanowires into alumina templates generated by one-step anodization, Electrochim. Acta, 259 (2018) 711-722. https://doi.org/10.1016/j.electacta.2017.11.035
  12. J. Zang, C. M. Li, S. J. Bao, X. Cui, Q. Bao and C. Q. Sun, Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network, Macromolecules, 41 (2008) 7053-7057. https://doi.org/10.1021/ma801345k
  13. S. Armyanov, Crystallographic structure and magnetic properties of electrodeposited cobalt and cobalt alloys, Electrochim. Acta, 45 (2000) 3323-3335. https://doi.org/10.1016/S0013-4686(00)00408-4
  14. Tohru Watanabe, Nano-plating Microstructure Control Theory of Plated Film and Data Base of Plated Film Microstructure, Iain Craig, ELSEVIER Ltd, Kidlington Oxford (2004) p.308.
  15. W. S. Choi and H. C. Shin, Microporous sponge structure with copper-cobalt oxide hybrid nanobranches, J. Alloys Compd. 692 (2017) 670-675. https://doi.org/10.1016/j.jallcom.2016.09.090
  16. Q. Yang, Z. Lu, X. Sun and J. Liu, Ultrathin Co3O4 nanosheet arrays with high supercapacitive performance, Scientific Reports, 3 (2013) 3537. https://doi.org/10.1038/srep03537
  17. S. J. Kim and H. C. Shin, Electrolytic Synthesis of Cobalt Nanorods without Using a Supporting Template, Korean J. Mater. Res. 24 (2014) 319-325. https://doi.org/10.3740/MRSK.2014.24.6.319
  18. N. F. Atta, A. M. Fekry and H. M. Hassaneen, Corrosion inhibition, hydrogen evolution and antibacterial properties of newly synthesized organic inhibitors on 316L stainless steel alloy in acid medium, Int. J. Hydrog. Energy, 36 (2011) 6462-6471. https://doi.org/10.1016/j.ijhydene.2011.02.134
  19. L. P. Bicelli, C. Romagnani and M. Rosania, Hydrogen evolution reaction on cobalt, J. Electroanal. Chem. 63 (1975) 238-244. https://doi.org/10.1016/S0022-0728(75)80296-8
  20. R. Sivasubramanian, M. V. Sangaranarayanan, Boric acid assisted electrosynthesis of hierarchical three-dimensional cobalt dendrites and microspheres, Mater. Chem. Phys. 136 (2012) 448-454. https://doi.org/10.1016/j.matchemphys.2012.07.006
  21. O. E. Kongstein, G. M. Haarberg and J. Thonstad, Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density, pH and temperature, J. Appl. Electrochem. 37 (2007) 669-674. https://doi.org/10.1007/s10800-007-9299-z
  22. S. Fletcher, Electrochemical deposition of hemispherical nuclei under diffusion control. Some theoretical considerations, J. Chem. Soc., Faraday Trans. 1, 79 (1983) 467-479. https://doi.org/10.1039/F19837900467
  23. S. H. Park, H. S. Shin, Y. H. Kim, H. M. Park and J. Y. Song, Template-free and filamentary growth of silver nanowires: application to anisotropic conductive transparent flexible electrodes, Nanoscale, 5 (2013) 1864-1869. https://doi.org/10.1039/c2nr33056c
  24. S. H. Park, H. S. Shin, Y. H. Kim, H. M. park and J. Y. Song, J. Alloys Compd. 580 (2013) 152-156. https://doi.org/10.1016/j.jallcom.2013.05.130
  25. J. H. Shin, S. H. Park, S. M. Hyun, J. W. Kim, H. M. Park and J. Y. Song, Electrochemical flow-based solution-solid growth of the Cu2O nanorod array: potential application to lithium ion batteries, Phys. Chem. Chem. Phys. 16 (2014) 18226-18232. https://doi.org/10.1039/c4cp02049a