DOI QR코드

DOI QR Code

기상변화와 지진계 설치 깊이가 HVSR 분석결과에 미치는 영향

Effects of Meteorological Variations and Sensor Burial Depths on HVSR Analysis

  • 강수영 (부산대학교 지질재해산업자원연구소) ;
  • 김광희 (부산대학교 지질환경과학과) ;
  • 김도영 (부산대학교 지질재해산업자원연구소) ;
  • 전병욱 (부산대학교 지질재해산업자원연구소) ;
  • 이진욱 (부산대학교 지질재해산업자원연구소)
  • Kang, Su Young (Institute of Geologic Hazard & Industrial Resources, Pusan National University) ;
  • Kim, Kwang-Hee (Department of Geological Science, Pusan National University) ;
  • Kim, Doyoung (Institute of Geologic Hazard & Industrial Resources, Pusan National University) ;
  • Jeon, Byeong-Uk (Institute of Geologic Hazard & Industrial Resources, Pusan National University) ;
  • Lee, Jin-Wook (Institute of Geologic Hazard & Industrial Resources, Pusan National University)
  • 투고 : 2020.10.15
  • 심사 : 2020.12.18
  • 발행 : 2020.12.31

초록

지반증폭특성과 퇴적층 두께를 분석할 때 배경잡음을 이용한 HVSR 방법을 적용할 수 있다. 본 연구는 배경잡음을 관측할 때 풍속과 강수량의 변화가 HVSR 분석 결과에 미치는 영향을 비교 분석하였다. 지진계는 매설 깊이를 다르게 하여 포항기상대에 설치하였다. 지진계가 지표에 노출된 상태에서 배경잡음을 관측하고 분석하면 부정확한 HVSR 결과가 도출된다. 바람이 강하게 부는 상황에서 관측한 배경잡음 또한 부정확한 HVSR 결과를 도출한다. 바람의 세기 3 ms-1 이하에서 배경잡음을 관측하여 분석하는 것이 적절하다. 지진계를 매설하면 강수량 변화에 상관없이 안정적인 HVSR 분석 결과를 도출하였다. 본 연구는 배경잡음 관측 시 지진계의 매설 깊이와 날씨의 영향을 최소화할 수 있는 설치환경과 관측환경을 제시함으로써 HVSR 분석 결과의 신뢰성과 정확성 향상을 도모한다.

The horizontal-to-vertical spectral ratio (HVSR) analysis is conducted to estimate the site amplification effect and the thickness of the sedimentary layer beneath the measurement site. We investigated the effects of meteorological variations (wind and precipitation rate) and sensor burial depths on HVSR analysis. The HVSR results were unstable when seismographs were exposed on the ground. The HVSR results of ambient noise data measured under strong winds were also unstable. It is recommended to measure the ambient noise at wind speeds of <3 m s-1. Stable HVSR results were obtained when seismographs were buried, regardless of the precipitation rates. The results of this study provide the best observations and optimal weather conditions required to acquire accurate and reliable HVSR results.

키워드

참고문헌

  1. Ahn, J.K., Cho, S., Jeon, Y.S., and Lee, D.K., 2018, Response characteristics of site-specific using aftershock event. Journal of the Korean Geotechnical Society, 34. 51-64. (in Korean)
  2. Anderson, J.G., Bodin, P., Brune, J.N., Prince, J., Singh, S.K., Quaas, R., and Onate, M. ,1986, Strong ground motion from the Michoacan, Mexico, earthquake. Science, 233, 1043-1049. https://doi.org/10.1126/science.233.4768.1043
  3. ANSS TIC (ANSS Technical Integration Committee), 2002, Technical Guidelines for the Implementation of the Advanced National Seismic System-Version 1.0, USGS Open-File Report 02-92, 96 p.
  4. Assatourians, K. and Atkinson, G., 2010, Database of Processed Time Series and Response Spectra Data for Canada: An Example Application to Study of 2005 MN5.4 Rivier du Loup, Quebec. Earthquake. Seismological Research Letters, 81, 1013-1031 DOI: https://doi.org/10.1785/gssrl.81.6.1013.
  5. Badrane, S., Bahi, L., Jabour, N., and Brahim, A. I., 2006, Seismic site effect estimation in the city of Rabat (Morocco). Journal of Geophysics and Engineering 3, 207-211 DOI: 10.1088/1742-2132/3/3/001.
  6. Bao, F., Li, Z., Tian, B., Wang, L., and Tu, G., 2019, Sediment thickness variations of the Tangshan fault zone in North China from a dense seismic array and microtremor survey. Journal of Asian Earth Sciences, 185, 104045. https://doi.org/10.1016/j.jseaes.2019.104045
  7. Bignardi, S., Mantovani, A., and AbuZeid, N., 2016, OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Computers & Geosciences 93, 103-113 DOI: http://dx.doi.org/10.1016/j.cageo.2016.05.009.
  8. Borcherdt, R.D., 1970, Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60, 29-61.
  9. Bottelin, P., Dufrchou, G., Seoane, L., Llubes, M., and Monod, B., 2019, Geophysical methods for mapping Quaternary sediment thickness: Application to the Saint-Lary basin (French Pyrenees). Comptes Rendus Geoscience, 351, 407-419. https://doi.org/10.1016/j.crte.2019.07.001
  10. Campillo, M., Gariel, J.C., Aki, K., and Snchez-sesma, F. J., 1989, Destructive strong ground motion in mexico city: source, path, and site effects during great 1985 Michocan earthquake. Bulletin of the Seismological Society of America, 79, 1718-1735. https://doi.org/10.1785/BSSA0790061718
  11. Castellaro, S. and Mulargia, F., 2009, Vs30 Estimates using constrained H/V measurement. Bulletin of the Seismological Society of America, 99, 761-773. https://doi.org/10.1785/0120080179
  12. Chatelain, J.C., Guillier, B., Cara, F., Duval, A., Atakan, K., Bard, P., and The WP02 SESAME team, 2008, Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bulletin of Earthquake Engineering, 6, 33-74. https://doi.org/10.1007/s10518-007-9040-7
  13. Chen, Q., Liu, L., Wang, W., and Rohrbach, E., 2009, Site effects on earthquake ground motion based on microtremor measurements for metropolitan Beijing. Chinese Science Bulletin, 54, 280-287.
  14. Field, E.H. and Jacob, K., 1993, The theoretical response of sedimentary layers to ambient seismic noise. Geophysical Research Letters, 20-24, 2925-2928. https://doi.org/10.1029/93GL03054
  15. Geopsy Group, 2019, Geopsy Package Release 3.2.0, http://www.geopsy.org/ (March 4th 2019).
  16. Haghshenas, E., Bard, P.-Y., Theodulidis, N., and SESAME WP04 Team, 2008, Empirical evaluation of microtremor H/V spectral ratio. Bulletin of Earthquake Engineering 6, 75-108 DOI: https://doi.org/10.1007/s10518-007-9058-x.
  17. Hassani, B. and Atkinson, G. M., 2016, Applicability of the Site Fundamental Frequency as a VS30 Proxy for Central and Eastern North America. Bulletin of the Seismological Society of America, 106, 653-664 DOI: https://www.doi.org/10.1785/0120150259.
  18. Hong, M.H. and Kim, K.Y., 2010, H/V Spectral-ratio analysis of microtremors in Jeju Island. Geophysics and Geophysical Exploration, 13, 144-152. (in Korean)
  19. Ibs-von Seht, M. and Wohlenberg, J., 1999, Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89, 250-259. https://doi.org/10.1785/BSSA0890010250
  20. Kagami, H., Okada, S., Shiono, K., Oner, M., Dravinski, M., and Mal, A.K., 1986, Observation of 1 to 5 second microtremors and their application to earthquake engineering. Part III. A two-dimensional study of site effects in the San Fernando Valley. Bulletin of the Seismological Society of America, 76, 1801-1812. https://doi.org/10.1785/BSSA0760061801
  21. Kang, S.Y., Kim, K.H., Chiu, J.M., and Liu, L., 2020, Microtremor HVSR analysis of heterogeneous shallow sedimentary structures at Pohang, South Korea. Journal of Geophysics and Engineering. https://doi.org/10.1093/jge/gxaa035.
  22. Kim, J. H. and Do, Y. W., 2018, Estimation of Economic Impact and Policy Implications of the Pohang Earthquake. Regional Economic Survey and Research. Pohang, Pohang Branch, The Bank of Korea. Pohang 2018-2. (in Korean)
  23. KMA (Korea Meteorological Administration), 2016, Weather observation guide, Department of observation policy, 252p.
  24. KMA (Korea Meteorological Administration), 2020, Weather data open portal, https://data.kma.go.kr/cmmn/main.do (September 17th, 2020)
  25. Konno, K. and Ohmachi, T., 1998, Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of ambient noise. Bulletin of the Seismological Society of America, 88, 228-241.
  26. Lee, H., Kim, R., and Kang, T.S., 2017, Seismic response from microtremor of Chogye Basin, Korea. Geophysics and Geophysical Exploration, 20, 88-95. (in Korean) https://doi.org/10.7582/GGE.2017.20.2.088
  27. Lermo, J. and Chvez-Garca, F.J., 1994, Are microtremors useful in site response evaluation?. Bulletin of the Seismological Society of America, 84, 1350-1364.
  28. Liu, L., Chen, Q., and Wang, W., 2014, Ambient noise as the new source for urban engineering seismology and earthquake engineering: a case study from Beijing metropolitan area. Earthquake Science, 27, 89-100. https://doi.org/10.1007/s11589-013-0052-x
  29. Nakamura, Y., 1989, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1), 25-33.
  30. Nakamura, Y., 2019, What is the Nakamura Method? Seismological Research Letters, 90, 1437-1443 DOI: https://doi.org/10.1785/0220180376.
  31. Ohmachi, T., Nakamura, Y., and Toshinawa, T., 1991, Ground motion characteristics in the San Francisco Bay area detected by micretremor measuremnets, Proc. 2nd Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, 1643-1648.
  32. Parolai, S., Bormann, P., and Milereit, C., 2002, New relationships between Vs, Thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany). Bulletin of the Seismological Society of America, 92, 2521-2527. https://doi.org/10.1785/0120010248
  33. Shearer, P.M. and Orcutt, J.A., 1987, Surface and near-surface effects on seismic waves theory and borehole seismometer results. Bulletin of the Seismological Society of America, 77, 1168-1196. https://doi.org/10.1785/BSSA0770041168
  34. Steidl, J. H., Tumarkin, A. G., and Archuleta, R. J., 1996, What Is a Reference Site? Bulletin of the Seismological Society of America, 86, 1733-1748.
  35. Sunaryo, 2017, Study of seismic vulnerability index (Kg) from dominant frequency (f0) and amplification factor (A0) by means of microzonation data: Case study on Batubesi dam of Nuha, East Luwu, South Sulawesi, Indonesia. 2017 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM).
  36. Teves-Costa, P., Matias, L., Oliveira, C.S., and Mendez-Victor, L.A., 1996, Shallow crustal models in the Losbon area from explosion data using body and surface wave analysis, Tectonophysics, 258, 171-193. https://doi.org/10.1016/0040-1951(95)00194-8
  37. Theodulidis, N.P. and Bard, P.Y., 1995, Horizontal to vertical spectral ratio and geological conditions: an analysis of strong motion data from Greece and Taiwan (SMART-1), Soil Dynamics and Earthquake Engineering, 14, 177-197. https://doi.org/10.1016/0267-7261(94)00039-J
  38. Tuncel, A. and Akgun, M., 2016, Obtaining the Ground Seismic Vulnerability Indexes Using Microtremor Method, 2016 International conference on engineering and natural sciences, Saragevo, 24-28 May 2016, 369-373.
  39. Wathelet, M., Chatelain, J.L., Cornou, C., Giulio, G.D., Guillier, B., Ohrnberger, M., and Savvaidis, A., 2020, Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismological Research Letters, 91, 1878-1889. https://doi.org/10.1785/0220190360
  40. Yun, W.Y., Park, S.C., and Kim, K.Y., 2013, Comparison of background noise characteristics between surface and borehole station of Hwacheon. Geophysics and Geophysical Exploration, 16, 203-210. (in Korean) https://doi.org/10.7582/GGE.2013.16.4.203