DOI QR코드

DOI QR Code

콘크리트의 역학적 특성에 대한 바텀애시 골재 양의 영향

Effect of Bottom Ash Aggregate Contents on Mechanical Properties of Concrete

  • 안태호 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 건축공학과) ;
  • 하정수 (단국대학교 건축학부)
  • Ahn, Tae-Ho (Department of Architectural Engineering, Graduate School, Kyonggi University) ;
  • Yang, Keun-Hyeok (Department of Architectural Engineering, Kyonggi University) ;
  • Ha, Jung-Soo (Department of Architectural Engineering, Dankook University)
  • 투고 : 2020.09.01
  • 심사 : 2020.12.21
  • 발행 : 2020.12.30

초록

본 연구에서는 바텀애시 골재 양이 콘크리트의 압축강도 발현 및 역학적 특성(탄성계수, 쪼갬 인장강도, 파괴계수)에 미치는 영향을 평가하였다. 실험변수는 천연모래에 대한 바텀애시 잔골재 치환율과 물-시멘트 비이다. 실험결과 바텀애시 골재 콘크리트의 재령 28일 압축강도와 재령 28일 압축강도 루트승으로 무차원한 바텀애시 골재 콘크리트의 역학적 특성들의 값들은 바텀애시 잔골재 양의 증가와 함께 감소하는 경향을 보였다. fib 2010의 모델식과 비교하면, 바텀애시 골재 콘크리트의 압축강도에 대한 초기 발현율은 낮은 반면 장기 발현율은 높았으며, 탄성계수와 파괴계수는 안전측에서 평가될 수 있지만, 쪼갬 인장강도는 불안전측이었다.

The present study examined the effect of bottom ash aggregate contents on the compressive strength gain and mechanical properties(modulus of elasticity and rupture and splitting tensile strength) of concrete. Main test parameters were water-to-cement ratio and bottom ash aggregate contents for replacement of natural sand. Test results showed that the 28-days compressive strength of concrete and mechanical properties normalized by the compressive strength tended to decrease with the increase in bottom ash fine aggregate content. When compared with fib 2010 model equations, bottom ash aggregate concrete exhibited the following performances: lower rates of compressive strength gain at early ages but greater rates at long-term ages; slightly higher measurements for modulus of elasticity and rupture; and lower measurements for splitting tensile strength.

키워드

참고문헌

  1. ACI Committee 318. (2014). Building Code Requirements for Structural Concrete(ACI 318-14) and Commentary, American Concrete Institute, Farmington Hills, Michigan, USA.
  2. fib 2010. (2013). Model Code for Concrete Structures, Special Activity Group 5, Federation Internationale de Beton, Lausanne, Switzerland.
  3. Ghafoori, N., Bucholc, J. (1997). Properties on high-calcium dry bottom ash for structural concrete, ACI Materials Journal, 94(2), 90-101.
  4. Ji, G.B. (2020). Evaluation on the Engineering Characteristics and Shrinkage Behavior of Lightweight Concrete using Bottom Ash Aggregates and Predormed Foams, Ph.D Thesis, Kyonggi University [in Korean].
  5. Korea Construction Standards Center. (2018). KDS 41 20 01, KSC 14 20 20. Korean. Goyang-si : Korea Construction Standard Center [in Korean].
  6. Korea Industrial Standards. (2016). KS F 2402, F 2408, F 2421, F 2423. Korea, Eum seong-gun : Korea Agency for Technology and Standards [in Korean].
  7. Kim, H.K. (2015). Properties of normal-strength mortar containing coarsely-crushed bottom ash considering standard particle size distribution of fine aggregate, Journal of the Korea Concrete Institute, 27(5), 531-539 [in Korean]. https://doi.org/10.4334/JKCI.2015.27.5.531
  8. Lee, H.A. (2009). Bond and Flexural Capacity Absorption of Recycled Coarse Aggregate in RC Beams, Master's Thesis, Kongju National University [in Korean].
  9. Lee, J.Y. (2015). A Characteristics of Mortar by using Fine Powder Bottom Ash as a Admixture, Master's Thesis, Daejin University [in Korean].
  10. Lee, K.H., Yang, K.H., Mun, J.H., Kwon, S.J (2018). Mechanical properties of concrete made from different expanded lightweight aggregates, ACI Materials Journal, 116(2), 9-19.
  11. Neville, A.M. (2011). Properties of Concrete. 5th ed, Person Education Limited, UK, Harlow, 846.
  12. Park, S.H. (2017). The Improvement of Bottom Ash Performance for Use as Fine Aggregate and Binder for Concrete, Ph.D Thesis, Daejin University [in Korean].
  13. Singh, M., Siddique, R. (2013). Effect of coal bottom ash as partial replacement of sand on properties of concrete, Resources, Conservation and Recycling, 72, 20-32. https://doi.org/10.1016/j.resconrec.2012.12.006
  14. Sim, J.I. (2013). The Influence of Unit Weight of Concrete on Size Effect of Compressive Strength, Direct Tensile Strength and Fracture Energy, Ph.D Thesis, Kyonggi University [in Korean].
  15. Yuksel, I., Genc, A. (2007). Properties of concrete containing nonground ash and slag as fine aggregate, ACI Materials Journal, 104(4), 397-403.
  16. Yang, K.H. (2019). Evaluation of mechanical properties of lightweight concrete using bottom ash aggregates, Journal of the Korea Concrete Institute, 31(4), 331-337 [in Korean]. https://doi.org/10.4334/jkci.2019.31.4.331