DOI QR코드

DOI QR Code

Hep3B 세포에서 베르베린은 DNA methyltransferase3b 억제를 통해 p53을 발현시켜 세포사멸을 유도

Berberine Induces p53-Dependent Apoptosis through Inhibition of DNA Methyltransferase3b in Hep3B Cells

  • 김대연 (강원대학교 춘천캠퍼스 수의과대학 동물의학종합연구) ;
  • 김선형 (강원대학교 춘천캠퍼스 수의과대학 동물의학종합연구) ;
  • 정희태 (강원대학교 춘천캠퍼스 수의과대학 동물의학종합연구) ;
  • 라창식 (강원대학교 춘천캠퍼스 동물생명과학대학) ;
  • 이기종 (연세대학교 원주캠퍼스 보건과학대학 생명의학연구소) ;
  • 정배동 (강원대학교 춘천캠퍼스 수의과대학 동물의학종합연구)
  • Kim, Dae-Yeon (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University) ;
  • Kim, Seon-Hyoung (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University) ;
  • Cheong, Hee-Tae (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University) ;
  • Ra, Chang-Six (College of Animal Life Sciences, Kangwon National University) ;
  • Rhee, Ki-Jong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju) ;
  • Jung, Bae Dong (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University)
  • 투고 : 2020.01.09
  • 심사 : 2020.01.31
  • 발행 : 2020.03.31

초록

종양 억제 유전자 p53은 인간 간암세포 Hep3B에서는 불활성화되어 있다. 베르베린(berberine)은 암세포의 증식을 억제하는 것으로 보고되어 있다. 우리는 베르베린을 처리한 Hep3B 세포에서 세포사멸이 유도되는지를 조사하였고 이 세포사멸이 p53과 DNA methyltransferase의 발현과 연관되어 있는지를 관찰하였다. MTT 분석을 통하여 세포 생존력을 측정하였다. 세포사멸은 각각 Annexin V flow 세포 분석을 사용하여 측정하였다. 베르베린이 처리된 세포에서 DNMT 효소 활성, mRNA 발현, 단백질 발현 정도가 검사되었으며, p53 단백질 발현은 웨스턴 블롯 분석에 의해 검사되었다. 베르베린 처리는 시간 및 용량 의존적으로 Hep3B세포의 세포사멸을 증가시켰다. 베르베린 처리 시 DNMT3b의 활성 정도, mRNA 발현 그리고 단백질 발현 정도가 모두 감소되었다. 이와는 대조적으로, Hep3B에서는 비활성인 p53 단백질의 발현은 DNMT3b의 감소와 동시에 증가했다. ERK의 발현은 변화가 없었으나, P-ERK의 발현은 농도 의존적으로 감소하는 것으로 나타났다. 이러한 결과는 Hep3B 세포에 베르베린의 처리는 DNMT3b의 발현을 감소시켜서 종양 억제 유전자인 p53의 증가를 유도할 수 있고, 이를 통해서 세포사멸을 증가 시킬 수 있다는 것을 나타낸다. 이는 베르베린이 간암 세포의 증식 억제에 효과적으로 작용할 수 있음을 보여준다.

The tumor suppressor gene, p53, is inactivated in the human hepatocellular carcinoma cells line, Hep3B. Berberine has been reported to inhibit the proliferation of cancer cells. This study examined whether apoptosis was induced in berberine-treated Hep3B cells and observed the association between apoptosis and the expression of p53 and DNA methyltransferase (DNMT). The cell viability was measured using an MTT assay. Apoptosis of Hep3B was measured using annexin V flow cytometry. Berberine-treated cells were examined for their DNMT enzymatic activity, mRNA expression, and protein synthesis. The p53 levels were examined by Western blot analysis. The berberine treatment resulted in increased Hep3B cell death and apoptosis in a time- and dose-dependent manner. The DNMT3b activity, mRNA expression, and protein levels all decreased after the berberine treatment. In contrast, the p53 protein levels increased with a concomitant decrease in DNMT3b. No change in the expression of ERK was observed, but the P-ERK levels decreased in a dose dependent manner. These results indicate that a treatment of Hep3B cells with berberine can reduce the expression of DNMT3b, leading to an increase in the tumor suppressant gene p53 and an increase in cell apoptosis. This shows that berberine can effectively suppress the proliferation of liver cancer cells.

키워드

참고문헌

  1. Simonetti RG, Camma C, Fiorello F, Politi F, D'amico G, Pagliaro L. Hepatocellular carcinoma a worldwide problem and the major risk factors. Dig Dis Sci. 1991;36:962-972. https://doi.org/10.1007/BF01297149
  2. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168-174. https://doi.org/10.1016/S0168-9525(99)01971-X
  3. Park HJ, Yu E, Shim YH. DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma. Cancer Lett. 2006;233:271-278. https://doi.org/10.1016/j.canlet.2005.03.017
  4. Oh B-K, Kim H, Park HJ, Shim YE, Choi J, Park C, et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med. 2007;20:65-73. https://doi.org/10.3892/ijmm.20.1.65
  5. Rovertson KD. DNA methylation, methyltransferases, and cancer. Oncogene. 2001;20:3139-3155. https://doi.org/10.1038/sj/onc/1204341
  6. Bestor TH. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 1992;11:2611-2617. https://doi.org/10.1002/j.1460-2075.1992.tb05326.x
  7. Schneider-Stock R, Ocker M. Epigenetic therapy in cancer: molecular background and clinical development of histone deacetylase and DNA methyltransferase inhibitors. IDrugs. 2007;10:557-561.
  8. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247-257. https://doi.org/10.1016/S0092-8674(00)81656-6
  9. Vertino PM, Yen R-W C, Gao J, Baylin SB. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (Cytosine-5-)-Methyltransferase. Mol Cell Biol. 1996;16:4555-4565. https://doi.org/10.1128/mcb.16.8.4555
  10. Rhee I, Jair KW, Yen R-W C, Lengauer C, Herman JG, Kinzler KW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000;404:1003-1007. https://doi.org/10.1038/35010000
  11. Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 1993;3:226-231. https://doi.org/10.1016/0959-437x(93)90027-m
  12. Alan Wang Y, Kamarova Y, Shen KC, Jiang Z, Hahn MJ, Wang Y, et al. DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression. Cancer Biol Ther. 2005;4:1138-1143. https://doi.org/10.4161/cbt.4.10.2073
  13. Varela M, Real MI, Burrel M, Fomer A, Sala M, Brunet M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: Efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46:474-481. https://doi.org/10.1016/j.jhep.2006.10.020
  14. Duffy A, Greten T. Developing better treatments in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol. 2014;4:551-560. https://doi.org/10.1586/egh.10.58
  15. Engel N, Oppermann C, Falodun A, Kragl U. Proliferative effects of five traditional Nigerian medicinal plant extracts on human breast and bone cancer cell lines. J Ethnopharmacol. 2011;137:1003-1010. https://doi.org/10.1016/j.jep.2011.07.023
  16. Wu HL, Chuang TY, Diamond MP, Azziz R, Chen Y-H. Berberine inhibits the proliferation of human uterine leiomyoma cells. Fertil Steril. 2015;103:1098-1106. https://doi.org/10.1016/j.fertnstert.2015.01.010
  17. Xu J, Long Y, Ni L, Yuan X, Yu N, Wu R, Tao J, Zhang Y. Anticancer effect of berberine based on experimental animal models of various cancers: a systematic review and meta-analysis. BMC Cancer. 2019;19:589. https://doi.org/10.1186/s12885-019-5791-1
  18. Guo P, Cai C, Wu X, Fan X, Huang W, Zhou J, Wu Q, Huang Y, Zhao W, Zhang F, Wang Q, Zhang Y, Fang J. An insight into the molecular mechanism of berberine towards multiple cancer types through systems pharmacology. Front Pharmacol. 2019;10:857. https://doi.org/10.3389/fphar.2019.00857
  19. Kim S, Choi JH, Kim JB, Nam SJ, Yang J-H, Kim J-H, et al. Berberine Suppresses TNF-$\alpha$-induced MMP-9 and Cell Invasion through Inhibition of AP-1 Activity in MDA-MB-231 Human Breast Cancer Cells. Molecules. 2008;13:2975-2985. https://doi.org/10.3390/molecules13122975
  20. Peng P-L, Hsieh Y-S, Wang C-J, Hsu J-L, Chou F-P. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol Appl Pharmacol. 2006;214:8-15. https://doi.org/10.1016/j.taap.2005.11.010
  21. Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 2010;29:405-434. https://doi.org/10.1007/s10555-010-9235-2
  22. Qing Y, Hu H, Liu Y, Feng T, Meng W, Jiang L, et al. Berberine induces apoptosis in human multiple myeloma cell line U266 through hypomethylation of p53 promoter. Cell Biol Int. 2013;38:563-570. https://doi.org/10.1002/cbin.10206
  23. Zhang Y, C,hang X, Song X, Chen C, Chen H, Lu Z, et al. Berberine reverses abnormal expression of L-type pyruvate kinase by DNA demethylation and histone acetylation in the livers of the non-alcoholic fatty disease rat. Int J Clin Exp Med. 2015;8:7535-7543.
  24. Puisieux A, Galvin K, Troalen F, Bressac B, Marcais C, Galun E, et al. Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines. FASEB. 1993;7:1407-1413. https://doi.org/10.1096/fasebj.7.14.8224613
  25. Levine AJ. p53, the cellular gatekeeper review for growth and division. Cell. 1997;88:323-331. https://doi.org/10.1016/s0092-8674(00)81871-1
  26. Wang H, Li K, Ma L, Wu S, Hu J, Yan H, et al. Berberine inhibits enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy. Virol. 2017;14:2. https://doi.org/10.1186/s12985-016-0674-4
  27. Hwang JM, Wang CJ, Chou FP, Tseng TH, Hsieh YS, Lin WL, et al. Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver. Arch Toxicol. 2002;76:664-670. https://doi.org/10.1007/s00204-002-0351-9
  28. Yokozawa T, Ishida A, Kashiwada Y, Cho EJ, Kim HY, Ikeshiro Y. Coptidis Rhizoma: protective effects against peroxynitrite-induced oxidative damage and elucidation of its active components. J Pharm Pharmacol. 2004;56:547-556. https://doi.org/10.1211/0022357023024
  29. Fukuda K, Hibiya Y, Mutoh M, Koshiji M, Akao S, Fujiwara H. Inhibition by berberine of cyclooxygenase-2 transcriptional activity in human colon cancer cells. Ethnopharmacol. 1999;66: 227-233. https://doi.org/10.1016/s0378-8741(98)00162-7
  30. Iizuka N, Miyamoto K, Okita K, Tangoku A, Hayashi H, Yosino S, et al. Inhibitory effect of Coptidis Rhizoma and berberine on the proliferation of human esophageal cancer cell lines. Cancer Lett. 2000;148:19-25. https://doi.org/10.1016/s0304-3835(99)00264-5
  31. Wang N, Feng Y, Zhu M, Tsang C-H, Man K, Tong Y, et al. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism. . J Cell Biochem. 2010;111:1426-1436. https://doi.org/10.1002/jcb.22869
  32. Zhang YJ, Ahsan H, Chen Y, Lunn RM, Wang LY, Chen SY, et al. High frequency of promoter hypermethylation of RASSF1A and p16 and its relationship to aflatoxin B1-DNA adduct levels in human hepatocellular carcinoma. Mol Carcinog. 2002;35:85-92. https://doi.org/10.1002/mc.10076
  33. Lambert MP, Paliwal A, Vaissiere T, Chemin I, Zoulim F, Tommasino M, et al. Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J Hepatol. 2011;54:705-715. https://doi.org/10.1016/j.jhep.2010.07.027
  34. Yeo W, Wong N, Wong WL, Lai PB.S, Zhong S, Johnson PJ. High frequency of promoter hypermethylation of RASSF1A in tumor and plasma of patients with hepatocellular carcinoma. Liver Int. 2005;25:266-272. https://doi.org/10.1111/j.1478-3231.2005.01084.x
  35. Hu L, Chen G, Yu H, Qiu X. Clinicopathological significance of RASSF1A reduced expression and hypermethylation in hepatocellular carcinoma. Hepatol Int. 2010;4:423-432. https://doi.org/10.1007/s12072-010-9164-8
  36. Liu Q, Xu X, Zhao M, Wei Z, Li X, Zhang X, et al. Berberine induces senescence of human glioblastoma cells by downregulating the EGFR-MEK-ERK signaling pathway. Mol Cancer Ther. 2014;14:355-363. https://doi.org/10.1158/1535-7163.mct-14-0634
  37. Kim HS, Kim M, Kim EJ, Yang Y, Lee MS, Lim JS. Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem Pharmacol. 2012;83:385-394. https://doi.org/10.1016/j.bcp.2011.11.008
  38. Friedman SL, Shaulian E, Littlewood T, Resnitzky D, Oren M. Resistance to p53-mediated growth arrest and apoptosis in Hep 3B hepatoma cells. Oncogene. 1997;15:63-70. https://doi.org/10.1038/sj.onc.1201149
  39. Esteve P-O, Chin HG, Pradhan S. Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc Natl Acad Sci USA. 2005;102:1000-1005. https://doi.org/10.1073/pnas.0407729102

피인용 문헌

  1. Nanotechnology-Based Strategies for Berberine Delivery System in Cancer Treatment: Pulling Strings to Keep Berberine in Power vol.7, 2020, https://doi.org/10.3389/fmolb.2020.624494