참고문헌
- Abdel-Rohman, M. and John, M.J. (2006), "Control of wind-induced nonlinear oscillations in suspension bridges using multiple semi-active tuned mass dampers", J. Vib. Control, 12(9), 1011-1046. https://doi.org/10.1177/1077546306069035.
- Arena, A. and Lacarbonara, W. (2012), "Nonlinear parametric modeling of suspension bridges under aeroelastic forces: torsional divergence and flutter", Nonlin. Dyn., 70(4), 2487-2510. https://doi.org/10.1007/s11071-012-0636-3.
- Arioli, G. and Gazzola, F. (2017), "Torsional instability in suspension bridges: the Tacoma Narrows Bridge case", Commun. Nonlin. Sci. Numer. Simul., 42, 342-357. https://doi.org/10.1016/j.cnsns.2016.05.028.
- Andersen, M.S. and Brandt, A. (2018), "Aerodynamic instability investigations of a novel, flexible and lightweight triple-box girder design for long-span bridges", J. Bridge Eng., 23(12), 04018095. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001317.
- Azzi, Z., Matus, M., Elawady, A., Zisis, I. and Irwin, P. (2018), "Large-scale aeroelastic testing to investigate the performance of span-wire traffic signals", In Proc. 5th AAWE Workshop, Miami, U.S.A. August.
- Battista, R. C. and Pfeil, M.S. (2000), "Reduction of vortex-induced oscillations of Rio-Niteroi bridge by dynamic control devices", J. Wind Eng. Ind. Aerod., 84(3), 273-288. https://doi.org/10.1016/S0167-6105(99)00108-7.
- Farhangdoust, S., Mehrabi, A. and Younesian, D. (2019), "Bistable wind-induced vibration energy harvester for self-powered wireless sensors in smart bridge monitoring systems", In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII 10971, 109710C. https://doi.org/10.1117/12.2517424.
- Farhangdoust, S. and Mehrabi, A. (2019), "Health monitoring of closure joints in accelerated bridge construction: A review of non-destructive testing application", J. Advan. Concrete Technol., 17(7), 381-404. https://doi.org/10.3151/jact.17.381.
- Fujino, Y. and Yoshida, Y. (2002), "Wind-induced vibration and control of Trans-Tokyo Bay crossing bridge", J. Struct. Eng., 128(8), 1012-1025. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1012)
- Gazzola, F. (2015), Mathematical models for suspension bridges. MS&A Springer.
- Guo, P., Li, S. and Wang, D. (2019), "Effects of aerodynamic interference on the iced straddling hangers of suspension bridges by wind tunnel tests", J. Wind Eng. Ind. Aerod., 184, 162-173. https://doi.org/10.1016/j.jweia.2018.11.017.
- Han, B., Yan, W.T., Cu, V.H., Zhu, L. and Xie, H.B. (2019), "H-TMD with hybrid control method for vibration control of long span cable-stayed bridge", Earthq. Struct., 16(3), 349-358. https://doi.org/10.12989/eas.2019.16.3.349.
- Harne, R.L. and Wang, K.W. (2013), "A review of the recent research on vibration energy harvesting via bistable systems", Smart Mat. Struct., 22(2), 023001. https://doi:10.1088/0964-1726/22/2/023001.
- Ghulam H., Mostafa R. and Shahin H. (2015), "Trade-off among mechanical properties and energy consumption in multi-pass friction stir processing of Al 7075-T651 alloy employing hybrid approach of artificial neural network and genetic algorithm", Proc I Mech E Part B: J Eng. Manuf., 231(1), 129-139.
- Ko, J.M., Sun, Z.G. and Ni, Y.Q. (2002), "Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun Bridge", Eng. Struct., 24(7), 857-868. https://doi.org/10.1016/S0141-0296(02)00024-X.
- Larsen, A. and Larose, G.L. (2015), "Dynamic wind effects on suspension and cable-stayed bridges", J. Sound Vib., 334, 2-28. https://doi.org/10.1016/j.jsv.2014.06.009.
- Larsen, A., Esdahl, S., Andersen, J.E. and Vejrum, T. (2000), Storebælt suspension bridge-vortex shedding excitation and mitigation by guide vanes", J. Wind Eng. Ind. Aerod., 88(2-3), 283-296. https://doi.org/10.1016/S0167-6105(00)00054-4.
- Li, H., Laima, S., Zhang, Q., Li, N. and Liu, Z. (2014), "Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge", J. Wind Eng. Ind. Aerod., 124, 54-67. https://doi.org/10.1016/j.jweia.2013.11.006.
- Li, H., Laima, S., Ou, J., Zhao, X., Zhou, W., Yu, Y., and Liu, Z. (2011), "Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements", Eng. Struct., 33(6), 1894-1907. https://doi.org/10.1016/j.engstruct.2011.02.017.
- Li, Z., Feng, M.Q., Luo, L., Feng, D. and Xu, X. (2018), "Statistical analysis of modal parameters of a suspension bridge based on Bayesian spectral density approach and SHM data", Mech. Syst. Signal Pr., 98, 352-367. https://doi.org/10.1016/j.ymssp.2017.05.005.
- Leadenham, S. and Erturk, A. (2014), "M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: Harmonic balance analysis and experimental validation", J. Sound Vib., 333(23), 6209-6223. https://doi.org/10.1016/j.jsv.2014.06.046.
- Munir, A., Zhao, M., Wu, H., Ning, D. and Lu, L. (2018), "Numerical investigation of the effect of plane boundary on two-degree-of-freedom of vortex-induced vibration of a circular cylinder in oscillatory flow", Ocean Eng., 148, 17-32. https://doi.org/10.1016/j.oceaneng.2017.11.022.
- Nguyen, S.D., Halvorsen, E., and Jensen, G.U. (2013), "Wideband MEMS energy harvester driven by colored noise", J. Microelectromech. Sys., 22(4), 892-900. https://doi.org/10.1109/JMEMS.2013.2248343.
- Pellegrini, S.P., Tolou, N., Schenk, M. and Herder, J.L. (2013), "Bistable vibration energy harvesters: a review", J. Intel. Mat. Syst. Struct., 24(11), 1303-1312. https://doi.org/10.1177/1045389X12444940.
- Ranjbar, M., Boldrin, L., Scarpa, F., Neild, S. and Patsias, S. (2016), "Vibroacoustic optimization of anti-tetrachiral and auxetic hexagonal sandwich panels with gradient geometry", Smart Mat. Struct., 25(5), 054012. https://doi:10.1088/0964-1726/25/5/054012.
- Saha, A., Saha, P. and Patro, S.K. (2018), "Seismic protection of the benchmark highway bridge with passive hybrid control system", Earthq. Struct. 15(3), 227-241. https://doi:10.12989/eas.2018.15.3.227.
- Simiu, E. and Yeo, D. (2019), Wind Effects on Structures: Modern Structural Design for wind, Wiley-Blackwell.
- Simiu, E. (2011), Design of Buildings for Wind: A Guide for ASCE 7-10 Standard Users and Designers of Special Structures, John Wiley & Sons.
- Smith, I.J. (1980), "Wind induced dynamic response of the Wye bridge", Eng. Struct., 2(4), 202-208. https://doi.org/10.1016/0141-0296(80)90001-2.
- Soman, R., Kyriakides, M., Onoufriou, T. and Ostachowicz, W. (2018), "Numerical evaluation of multi-metric data fusion based structural health monitoring of long span bridge structures", Struct. Infrastruct. Eng., 14(6), 673-684. https://doi.org/10.1080/15732479.2017.1350984.
- Steinman, D.B. (1954), "Suspension bridges: The aerodynamic problem and its solution", Am. Scientist, 42(3), 396-460.
- Tang, L. and Yang, Y. (2012), "A nonlinear piezoelectric energy harvester with magnetic oscillator", Appl. Phys. Lett, 101(9), 094102. https://doi.org/10.1063/1.4748794.
- Vaz, D.C., Almeida, R. A. and Borges, A.R.J. (2018), "Wind action phenomena associated with large-span bridges", In Bridge Engineering. IntechOpen.
- Vocca, H., Neri, I., Travasso, F. and Gammaitoni, L. (2012), "Kinetic energy harvesting with bistable oscillators", Appl. Energy, 97, 771-776. https://doi.org/10.1016/j.apenergy.2011.12.087.
- Wang, W., Cao, J., Bowen, C.R., Zhang, Y. and Lin, J. (2018), "Nonlinear dynamics and performance enhancement of asymmetric potential bistable energy harvesters", Nonlinear Dyn., 94(2), 1183-1194. https://doi.org/10.1007/s11071-018-4417-5
- Wang, W., Wang, X., Hua, X., Song, G. and Chen, Z. (2018), "Vibration control of vortex-induced vibrations of a bridge deck by a single-side pounding tuned mass damper", Eng. Struct., 173, 61-75. https://doi.org/10.1016/j.engstruct.2018.06.099
- Wang, L., Jiang, T.L., Dai, H.L. and Ni, Q. (2018), "Three-dimensional vortex-induced vibrations of supported pipes conveying fluid based on wake oscillator models", J. Sound and Vib., 422, 590-612. https://doi.org/10.1016/j.jsv.2018.02.032.
- Wu, T., Kareem, A. and Ge, Y. (2013), "Linear and nonlinear aeroelastic analysis frameworks for cable-supported bridges", Nonlinear Dyn., 74(3), 487-516. https://doi.org/10.1007/s11071-013-0984-7
- Xu, Y.L. (2018), "Making good use of structural health monitoring systems of long-span cable-supported bridges", J. Civil Struct. Health Monit., 8, 477-497. https://doi.org/10.1007/s13349-018-0279-2
- Younesian, D. and Alam, M.R. (2017), "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting", Appl. Energy, 197, 292-302. https://doi.org/10.1016/j.apenergy.2017.04.019.
- Zhang, Q.W., Chang, T.Y.P. and Chang, C.C. (2001), "Finite-element model updating for the Kap Shui Mun cable-stayed bridge", J. Bridge Eng., 6(4), 285-293. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:4(285).
- Zhang X., Connor J. and Nepf H. (2012), "Wind Effect on Long Span Bridge". http://hdl.handle.net/1721.1/74418.
- Zhang, W., Wei, Z., Yang, Y. and Ge, Y. (2008), "Comparison and analysis of vortex induced vibration for twin-box bridge sections based on experiments in different reynolds numbers", J. Tongjil Uni, 36(1), 6.
- Zhou, G., Li, A., Li, J. and Duan, M. (2018), "Structural health monitoring and time-dependent effects analysis of self-anchored suspension bridge with extra-wide concrete girder", Appl. Sci., 8(1), 115. https://doi.org/10.3390/app8010115.
- Zhou, R., Ge, Y., Yang, Y., Du, Y. and Zhang, L. (2018), "Wind-induced nonlinear behaviors of twin-box girder bridges with various aerodynamic shapes", Nonlin. Dyn., 94(2), 1095-1115. https://doi.org/10.1007/s11071-018-4411-y.