DOI QR코드

DOI QR Code

Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis

부지응답해석을 이용한 지역별 대표 진도 산출 연구

  • Ahn, Jae-Kwang (Earthquake and Volcano Research Div. Korea Meteorological Administration) ;
  • Son, Su-Won (Seismic Simulation Test Center, Pusan National University)
  • Received : 2019.11.11
  • Accepted : 2019.12.11
  • Published : 2020.01.01

Abstract

Vibration propagated from seismic sources has damping according to distance and amplification and reduction characteristic in different regions according to topography and geological structure. The vibration propagated from the seismic source to the bedrock is largely affected by the damping according to the separation distance, which can be simply estimated through the damping equation. However, it is important to grasp geological information by location because vibration estimation transmitted to the surface are affected by the natural period of the soil located above the bedrock. Geotechnical investigation data are needed to estimate the seismic intensity based on geological information. If there is no Vs profile, the standard penetration tests are mainly used to determine the soil parameters. The Integrated DB Center of National Geotechnical Information manages the geotechnical survey data performed on the domestic ground, and there is the standard penetration test information of 400,000 holes. In this study, the possibility of quantitation the amplification coefficient for each region was examined to calculated the physical interactive seismic intensity based on geotechnical information. At this time, the shear wave column diagram was generated from the SPT-N value and ground response analysis was performed in the target area. The site coefficients for each zone and the seismic intensity distribution for the seismic motion present a significant difference according to the analysis method and the regional setting.

지진원으로부터 전파되는 진동은 거리에 따른 감쇠와 지형 혹은 지질구조에 따라 지역마다 다른 증·감폭 특성을 가진다. 지진원에서 기반암까지의 전파되는 진동은 이격거리에 따른 감쇠의 영향이 크며, 이는 감쇠식을 통해 쉽게 추정할 수 있다. 하지만 지표면에 전달되는 진동 추정은 기반암 상부에 위치한 토층 고유주기의 영향을 받기에 위치별 지질정보 파악이 중요하다. 지질정보 기반 진도 추정을 위해 지반조사 자료가 필요하며, Vs 주상도가 없을 경우 표준관입시험을 통해 대상지반의 강도 및 특성 파악에 주로 사용된다. 국토지반정보 포털시스템에서는 국내 지반에서 수행된 지반조사자료를 통합하여 관리하고 있으며, 표준관입시험 정보가 약 40만공을 구축되어 있다. 본 연구에서는 지반정보를 기반으로 체감형 진도정보 산출을 위해 권역별로 증폭계수 정량화 가능성을 검토하였다. 이때 SPT-N치를 자료를 통해 전단파 주상도를 생성하고, 대상지역에 지반응답해석을 수행하였다. 권역별 증폭계수와 지진파의 주기별 진도 분포는 해석방법 및 권역설정에 따라 큰 차이를 보였다.

Keywords

References

  1. Ahn, J. K., Cho, S., Jeon, Y. S. and Lee, D. K. (2018), Response characteristics of site-specific using aftershock event, Journal of the Korean Geotechnical Society, Vol. 34, No. 8, pp. 51-64 (In Korea). https://doi.org/10.7843/KGS.2018.34.8.51
  2. Bernard, R. W., Jason, T. D. and Thomas, S. (2012), Guidelines for estimation of shear wave velocity profiles, PEER 2012/09, December 2012.
  3. Cho, H. I., Manandhar, S. and Kim, D. S. (2016), Site classification and design response spectra for seismic code provisions - (I) Database and site response analyses, Journal of the Earthquake Engineering Society, Vol. 20, No. 4, pp. 235-243 (In Korea). https://doi.org/10.5000/EESK.2016.20.4.235
  4. Hashash, Y. M. A., Musgrove, M. I., Harmon, J. A., Groholski, D. R., Phillips, C. A. and Park, D. (2015), DEEPSOIL 6.0. User Manual, 116.
  5. Idriss, I. M. and Seed, H. B. (1968), Seismic response of horizontal soil layers, Journal of Soil Mechanics and Foundation Division, Vol. 94, No. 4, pp. 1003-1031. https://doi.org/10.1061/JSFEAQ.0001163
  6. Idriss, I. M. and Sun, J. I. (1993), User's manual for SHAKE91: a computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits, Dept. of Civil and Environmental Eng. Univ. of Califonia, Davis, California.
  7. Integrated DB Center of National Geotechnical Information (2010), Website: www.geoinfo.or.kr
  8. Kim, B., Hashash, Y. M., Stewart, J. P., Rathje, E. M., Harmon, J. A., Musgrove, M. I., Campbell, K. W. and Silva, W. J. (2016), Relative differences between nonlinear and equivalent-linear 1-D site response analyses. Earthquake Spectra, Vol. 32, No. 3, pp. 1845-1865. https://doi.org/10.1193/051215EQS068M
  9. Korea Meteorological Administration (KMA) (2018a), Research on application and support for the earthquake and volcanic service(I): Requirement of stabilization of earthquake early warning system and provision of accurate intensity information. Report No. 11-1360000-001525-10, pp. 14-23 (In Korea).
  10. Korea Meteorological Administration (KMA) (2018b), Seismic intensity class of status based on MMI, Available at: http://www.weather.go.kr/weather/earthquake_volcano/intensity_info. jsp, Accessed: Nov., 2019 (In Korean).
  11. Kwok, O. L. A., Stewart, J. P., Kwak, D. Y. and Sun, P. L. (2018), Taiwan-specific model for Vs30 prediction considering between-proxy correlations, Earthquake Spectra, Vol. 34, No. 4, pp. 1973-1993. https://doi.org/10.1193/061217EQS113M
  12. Lee, J. S. (2019), A Study on microzonation of Sejong city area by site amplification characteristics, Master dissertation, Chungnam National University, Korea (In Korea).
  13. Matasovic, N. (1993), Seismic response of composite horizontallylayered soil deposits, Ph.D. Thesis, University of California, Los Angeles.
  14. Ministry of the Interior and Safety (2017), Common application of seismic design standards, Enforcement ordinance of the earthquake and volcano disaster countermeasure act article 10-2, 2017.12.19. (In Korea), (http://www.law.go.kr/법령/지진재해대 책법시행령)
  15. Ministry of Land, Infrastructure and Trasnport (2017), Guidelines for computerization and use of geo survey results, 2017.4.18. (In Korea) (http://law.go.kr/LSW/admRulLsInfoP.do?admRulSeq=2100000085549)
  16. Ordonez, G. A. (2012), SHAKE2000: A computer program for the 1-D analysis of geotechnical earthquake engineering problemms, GeoMotions, LLC:Lacey, Washington, USA.
  17. Park, D. and Hashash, Y. M. (2004), Soil damping formulation in nonlinear time domain site response analysis, Journal of Earthquake Engineering, Vol. 8, No. 2, pp. 249-274. https://doi.org/10.1080/13632460409350489
  18. Park, J. Y., Kim, J. M. and Yoon, S. H. (2015), "Threedimensional geologic modeling of the Pohang basin in Korea for geologic storage of carbon dioxide", Journal of the Geological Society of Korea, Vol. 51, No. 3, pp. 289-302. https://doi.org/10.14770/jgsk.2015.51.3.289
  19. ProShake User Manual: PROSHAKE: Ground response analysis program, Version 1.1, EduPro Civil Systems, Inc., Redmond, Washington (1996).
  20. Stewart, J. P., Klimis, N., Savvaidis, A., Theodoulidis, N., Zargli, E., Athanasopoulos, G. and Margaris, B. (2014), Compilation of a local Vs profile database and its application for inference of Vs30 from geologic‐and terrain‐based proxies, Bulletin of the Seismological Society of America, Vol. 104, No. 6, pp. 2827-2841. https://doi.org/10.1785/0120130331
  21. Sun, C., Kim B., Park, K. and Chung, C. (2015), Geotechnical comparison of weathering degree and shear wave velocity in the decomposed granite layer in Hongseong, South Korea, Environmental Earth Science, Vol. 74, No. 9, pp. 6901-6917. https://doi.org/10.1007/s12665-015-4692-0
  22. Wald, D. J. and Allen, T. I. (2007), Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, Vol. 97, No. 5, pp. 1379-1395. https://doi.org/10.1785/0120060267
  23. Wald, D. J., Worden, B. C., Quitoriano, V. and Pankow, K. L. (2006), ShakeMap(R) manual. Technical Manual, users guide and software guide Version.