References
- A. Sgobbi, W. Nijs, R. Miglio, A. Chiodi, M. Gargiulo, and C. Thiel, "How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system", Int. J. Hydrogen Energy, 41, 19 (2016). https://doi.org/10.1016/j.ijhydene.2015.09.004
- G. Nicoletti, N. Arcuri, G. Nicoletti, and R. Bruno, "A technical and environmental comparison between hydrogen and some fossil fuels", Energy Convers. Manag., 89, 205 (2015). https://doi.org/10.1016/j.enconman.2014.09.057
- A. Ozawa, Y. Kudoh, A. Murata, T. Honda, I. Saita, and H. Takagi, "Hydrogen in low-carbon energy systems in Japan by 2050: the uncertainties of technology development and implementation", Int. J. Hydrogen Energy, 43, 18083 (2018). https://doi.org/10.1016/j.ijhydene.2018.08.098
- F. Dawood, M. Anda, and G. M. Shafiullah, "Hydrogen production for energy: an overview", Int. J. Hydrogen Energy, 45, 3847 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.059
- L. F. Chanchetti, D. R. Leiva, L. I. L. De Faria, and T. T. Ishikawa, "A scientometric review of research in hydrogen storage materials", Int. J. Hydrogen Energy, 45, 5356 (2020). https://doi.org/10.1016/j.ijhydene.2019.06.093
- H. Michel, P. Guzay, and M. Adwin, "Hydrogen refuelling stations in the Netherlands: an intercomparison of quantitative risk assessments used for permitting", Int. J. Hydrogen Energy, 43, 12278 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.111
- J. Guo, L. Xing, Z. Hua, C. Gu, and J. Zheng, "Optimization of compressed hydrogen gas cycling test system based on multi-stage storage and self-pressurized method", Int. J. Hydrogen Energy, 41, 16306 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.076
- S. Junji, S. Ryunosuke, N. Jo, K. Naoya, S. Tadahiro, and M. Atsumi, "Leakage-type-based analysis of accidents involving hydrogen fueling stations in Japan and USA", Int. J. Hydrogen Energy, 41, 21564 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.060
- H. Ono, H. Fujiwara, and S. Nishimura, "Penetrated hydrogen content and volume inflation in unfilled NBR exposed to high-pressure hydrogen - What are the characteristics of unfilled-NBR dominating them?", Int. J. Hydrogen Energy, 43, 18392 (2018). https://doi.org/10.1016/j.ijhydene.2018.08.031
- S. Nishimura, "Rubbers and elastomers for high-pressure hydrogen seal", Soc. Polym. Sci., 64, 356 (2015).
- W. Yu, X. Dianbo, F. Jianmei, and P. Xueyuan, "Research on sealing performance and self-acting valve reliability in highpressure oil-free hydrogen compressors for hydrogen refueling stations", Int. J. Hydrogen Energy, 35, 8063 (2010). https://doi.org/10.1016/j.ijhydene.2010.01.089
- B. A. Meyer, C. A. LaJeunesse, J. T. Carrel, and M. Kelley, "Experimental techniques in high-pressure research on elastomeric O-ring seal designs", Am. Soc. Mech. Eng., 235, 81 (1992).
- J. Yamabe and S. Nishimura, "Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas", Int. J. Hydrogen Energy, 34, 1977 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.105
- S. Nishimura and H. Fujiwara, "Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance", Chem. Phys. Lett., 522, 43 (2012). https://doi.org/10.1016/j.cplett.2011.11.080
- H. Fujiwara and S. Nishimura, "Evaluation of hydrogen dissolved in rubber materials under high-pressure exposure using nuclear magnetic resonance", Polym. J., 44, 832 (2012). https://doi.org/10.1038/pj.2012.111
- J. Yamabe and S. Nishimura, "Influence of carbon black on decompression failure and hydrogen permeation properties of filled ethylene propylene-diene-methylene rubbers exposed to high-pressure hydrogen gas", J. Appl. Polym. Sci., 122, 3172 (2011). https://doi.org/10.1002/app.34344
- J. Yamabe, S. Nishimura, and A. Koga, "A study on sealing behavior of rubber O-ring in high pressure hydrogen gas", SAE Int. J. Mater. Manuf., 2, 452 (2009). https://doi.org/10.4271/2009-01-0999
- ISO 11346, "Rubber, vulcanized or thermoplastic - Estimation of life-time and maximum temperature of use" (2004).
- P. Tuckner, "Compression, Compression stress relaxation test comparisons and development", SAE Technical report 2000-01-0752 (2001).
- P. Tuckner, "Compression stress relaxation testing - comparisons, methods, and correlations", SAE Technical report 2001-01-0742 (2001).
- S. Ronan, T. Alshuth, S. Jerrams, and N. Murphy, "Long-term stress relaxation prediction for elastomers using the time-temperature superposition method", Mater. Des., 28, 1513 (2007). https://doi.org/10.1016/j.matdes.2006.03.009
- R. W. Ogden and D. G. Roxburgh, "A pseudo-elastic model for the Mullins effect in filled rubber", Proc. R. Soc. Lond. A, 455, 2861 (1999). https://doi.org/10.1098/rspa.1999.0431
- J. H Lee, J. W. Bae, M. C. Choi, Y. M. Yun, and W. H. Kim, "Study on the Degradation Behavior of Acrylonitrile Rubber (NBR) O-ring by Intermittent CSR and Time-Temperature Superposition Principle". J. of the Korean Society of Propulsion Engineers, 23, 46 (2019).
- J. H. Lee, J. W. Bae, M. C. Choi, Y. M. Yoon, and S. H. Park, "Study on the Thermal Degradation Behavior of FKM Orings", Elastomers Compos., 53, 213 (2018). https://doi.org/10.7473/EC.2018.53.4.213
- J. H. Lee and J. W. Bae, "Life-time prediction of a Chloroprene Rubber O-ring Using Intermittent CSR and Time-Temperature Superposition Principle", Macromol. Res., 19, 6 (2011).