DOI QR코드

DOI QR Code

A Training Method for Emotion Recognition using Emotional Adaptation

감정 적응을 이용한 감정 인식 학습 방법

  • Kim, Weon-Goo (Dept. of Electrical Engineering, Kunsan National University)
  • Received : 2020.11.26
  • Accepted : 2020.12.15
  • Published : 2020.12.31

Abstract

In this paper, an emotion training method using emotional adaptation is proposed to improve the performance of the existing emotion recognition system. For emotion adaptation, an emotion speech model was created from a speech model without emotion using a small number of training emotion voices and emotion adaptation methods. This method showed superior performance even when using a smaller number of emotional voices than the existing method. Since it is not easy to obtain enough emotional voices for training, it is very practical to use a small number of emotional voices in real situations. In the experimental results using a Korean database containing four emotions, the proposed method using emotional adaptation showed better performance than the existing method.

본 논문에서는 기존 감정 인식 시스템의 성능 향상을 위하여 감정 적응을 사용한 감정 학습 방법이 제안되었다. 감정 적응을 위하여 적은 개수의 학습 감정 음성과 감정 적응 방식을 사용하여 감정이 없는 음성 모델로부터 감정 음성 모델이 생성되었다. 이러한 방법은 기존 방법보다 적은 개수의 감정 음성을 사용하여도 우수한 성능을 나타내었다. 학습을 위하여 충분한 감정 음성을 얻는 것은 쉽지 않기 때문에 적은 개수의 감정 음성을 사용하는 것은 실제 상황에서 매우 실용적이다. 4가지 감정이 포함된 한국어 데이터베이스를 사용한 실험 결과에서 감정 적응을 이용한 제안된 방법이 기존 방법보다 우수한 성능을 나타내었다.

Keywords

References

  1. Rafael A. Calvo, SSidney D'Mello, "Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications," IEEE Transactions on the. Affective Computing, Vol.1, No.1, pp.18-37, 2010. DOI: 10.1109/T-AFFC.2010.1
  2. V. Kostv and S. Fukuda, "Emotion in User Interface, Voice Interaction System," in Proc.. of the IEEE International Conference on Systems, Cybernetics Representation, pp.798-803, 2000.
  3. T. Moriyama and S. Oazwa, "Emotion Recognition and Synthesis System on Speech," in Proc. of the IEEE Intl. Conference on Multimedia Computing and System, pp.840-844, 1999. DOI: 10.1109/MMCS.1999.779310
  4. L. C. Siva and P. C. Ng, "Bimodal Emotion Recognition," in Proc. of the 4th Intl. Conference on Automatic Face and Gesture Recognition, pp.332-335, 2000. DOI: 10.1109/AFGR.2000.840655
  5. Kokane Amol T., Ram Mohana Reddy Guddeti, "Multiclass SVM-based Language- Independent Emotion Recognition using Selective Speech Features," in Proc. of ICACCI, pp.1069-1073, 2014. DOI: 10.1109/ICACCI.2014.6968337
  6. Rode Snehal Sudhkar, Manjare Chandraprabha Anil, "Analysis of Speech Features for Emotion Detection: A review," in Proc. of the 2015 International Conference on Computing Communication Control and Automation, pp.661-664, 2015. DOI: 10.1109/ICCUBEA.2015.135
  7. Y. G. Kim, Y. C. Bae, "Design of Emotion Recognition Model Using fuzzy Logic," in Proc. of KFIS Spring Conference, pp.268-282, 2000. DOI: 10.1007/s11042-019-7250-z
  8. K. B. Sim, C. H. Park, "Analyzing the Element of Emotion Recognition from Speech," Journal of Korean Institute of Intelligent Systems, Vol.11, No.6, pp.510-515, 2001. DOI: 10.5391/JKIIS.2003.13.1.045
  9. Reynolds, D. A., Quatieri, T. F., Dunn, R. B., "Speaker Verification using Adapted Gaussian Mixture Models," Digital Signal Processing, Vol.10, pp.19-41, 2000. DOI: 10.1006/dspr.1999.0361
  10. Natalia Tomashenko1,2 and Yannick Esteve, "Evaluation of Feature-Space Speaker Adaptation for End-to-End Acoustic Models," in Proc. of the Eleventh International Conference on Language Resources, pp.3163-3170. 2018.
  11. W. G. Kim, "Speech Emotion Recognition using Feature Selection and Fusion Method," Transactions of the Korean Institude of Electrical Engineers, Vol.66, No.8, pp.1265-1271, 2017. DOI: 10.5370/KIEE.2017.66.8.1265