DOI QR코드

DOI QR Code

Application of Quartz Crystal Microbalance to Understanding the Transport of Microplastics in Soil and Groundwater

토양-지하수내 미세플라스틱 거동 연구를 위한 수정진동자미세저울 기술 소개

  • Kim, Juhyeok (Department of Geology, Kangwon National University) ;
  • Myeong, Hyeonah (Department of Geology, Kangwon National University) ;
  • Son, Sangbo (Department of Geology, Kangwon National University) ;
  • Kwon, Kideok D. (Department of Geology, Kangwon National University)
  • 김주혁 (강원대학교 자연과학대학 지질학과) ;
  • 명현아 (강원대학교 자연과학대학 지질학과) ;
  • 손상보 (강원대학교 자연과학대학 지질학과) ;
  • 권기덕 (강원대학교 자연과학대학 지질학과)
  • Received : 2020.12.01
  • Accepted : 2020.12.30
  • Published : 2020.12.31

Abstract

Presence of microplastics in soil and groundwater has recently been reported and environmental concerns are raised as to the plastic pollution. In the subsurface environment, clay minerals and metal oxide minerals are commonly found as finely dispersed states. Because the minerals have high sorption capacities for diverse pollutants, interactions with mineral surface play an important role in the transport of microplastics in groundwater. Accordingly, environmental mineralogy investigating the interactions between microplastics and mineral surfaces is the essential research area to understand the fate and transport of microplastics in the subsurface environment. The microplastic-mineral surface research requires molecular- to nano-scale analyses to be able to probe the relatively weak interactions between them. The current report introduces a nano-scale analysis tool called quartz crystal microbalance (QCM) that can measure the sorbed/desorbed mass of nanoplastics on mineral surfaces at the level of a few nanograms (~10-9 g). This report briefly reviews the main principles in the QCM measurement and discusses applications of QCM to the environmental mineralogy research.

최근 토양과 지하수에서도 미세플라스틱이 발견되어 미세플라스틱 환경오염 관련 연구의 중요성이 크게 대두되고 있다. 주로 ㎛ - nm의 작은 입자로 존재하는 점토광물과 금속산화광물은 표면적이 넓어 미세플라스틱에 대한 흡착력 등 화학 반응도가 매우 높기 때문에, 광물표면 상호작용은 토양과 지하수 환경 내 미세플라스틱의 거동을 결정하는 중요한 역할을 할 수 있다. 따라서, 광물과 미세플라스틱 간의 상호작용에 대한 환경광물학 연구는 미세플라스틱 거동 예측 기술개발 및 오염대책 마련에 핵심이 되는 연구분야라 할 수 있다. 광물표면과 미세플라스틱(특히, 나노플라스틱) 연구에는 분자-나노수준의 분석기술이 요구된다. 이번 기술보고에서는 나노그람(=10-9 g) 수준의 질량 변화를 실시간으로 측정할 수 있는 초정밀 분석기기로, 광물표면에 흡·탈착되는 미세플라스틱 및 나노플라스틱의 미세한 질량 변화를 측정할 수 있는, 수정진동자미세저울(quartz crystal microbalance, QCM)을 소개한다. QCM 작동원리를 소개하고, 대표적인 QCM 연구결과와 기존 컬럼 실험과의 장단점을 비교하여 미세플라스틱 연구에 QCM 활용 가능성을 논의한다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 미세플라스틱 측정 및 위해성 평가 기술개발사업의 지원을 받아 연구되었습니다(2020003110010).

References

  1. Alagha, L., Wang, S., Yan, L., Xu, Z. and Masliyah, J., 2013, Probing adsorption of polyacrylamide-based polymers on anisotropic basal planes of kaolinite using quartz crystal microbalance. Langmuir, 29, 3989-3998. https://doi.org/10.1021/la304966v
  2. Alimi, O.S., Farner Budarz, J., Hernandez, L.M. and Tufenkji, N., 2018, Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52, 1704-1724. https://doi.org/10.1021/acs.est.7b05559
  3. Aragaw, T.A., 2020, Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Marine Pollution Bulletin, 159, 111517. https://doi.org/10.1016/j.marpolbul.2020.111517
  4. Ayela, C., Roquet, F., Valera, L., Granier, C., Nicu, L. and Pugniere, M., 2007, Antibody-antigenic peptide interactions monitored by SPR and QCM-D: A model for SPR detection of IA-2 autoantibodies in human serum. Biosensors and Bioelectronics, 22, 3113-3119. https://doi.org/10.1016/j.bios.2007.01.020
  5. Banzhaf, S., Nodler, K., Licha, T., Krein, A. and Scheytt, T., 2012, Redox-sensitivity and mobility of selected pharmaceutical compounds in a low flow column experiment. Science of the Total Environment, 438, 113-121. https://doi.org/10.1016/j.scitotenv.2012.08.041
  6. Barnes, D.K., Galgani, F., Thompson, R.C. and Barlaz, M., 2009, Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1985-1998. https://doi.org/10.1098/rstb.2008.0205
  7. Baumgarten, B., Jaehrig, J., Reemtsma, T. and Jekel, M., 2011, Long term laboratory column experiments to simulate bank filtration: factors controlling removal of sulfamethoxazole. Water Research, 45, 211-220. https://doi.org/10.1016/j.watres.2010.08.034
  8. Blettler, M.C., Abrial, E., Khan, F.R., Sivri, N. and Espinola, L.A., 2018, Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps. Water Research, 143, 416-424. https://doi.org/10.1016/j.watres.2018.06.015
  9. Bouwmeester, H., Hollman, P.C. and Peters, R.J., 2015, Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environmental Science & Technology, 49, 8932-8947. https://doi.org/10.1021/acs.est.5b01090
  10. Brennecke, D., Duarte, B., Paiva, F., Cacador, I. and Canning-Clode, J., 2016, Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189-195. https://doi.org/10.1016/j.ecss.2015.12.003
  11. Butler, B.A., 2009, Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Water Research, 43, 1392-1402. https://doi.org/10.1016/j.watres.2008.12.009
  12. Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L. and Suh, S., 2020, Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8, 3494-3511. https://doi.org/10.1021/acssuschemeng.9b06635
  13. Chen, G. and Flury, M., 2005, Retention of mineral colloids in unsaturated porous media as related to their surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 256, 207-216. https://doi.org/10.1016/j.colsurfa.2005.01.021
  14. Chen, Q., Xu, S., Liu, Q., Masliyah, J. and Xu, Z., 2016, QCM-D study of nanoparticle interactions. Advanced Colloid Interface Science, 233, 94-114. https://doi.org/10.1016/j.cis.2015.10.004
  15. Chinju, H., Kuno, Y., Nagasaki, S. and Tanaka, S., 2001, Deposition behavior of polystyrene latex particles on solid surfaces during migration through an artificial fracture in a granite rock sample. Journal of Nuclear Science and Technology, 38, 439-443. https://doi.org/10.3327/jnst.38.439
  16. Corcoran, P.L., Norris, T., Ceccanese, T., Walzak, M.J., Helm, P.A. and Marvin, C.H., 2015, Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record. Environmental Pollution, 204, 17-25. https://doi.org/10.1016/j.envpol.2015.04.009
  17. Deakin, M.R. and Buttry, D.A., 1989, Electrochemical applications of the quartz crystal microbalance. Analytical Chemistry, 61, 1147A-1154A. https://doi.org/10.1021/ac00195a001
  18. Elimelech, M., Nagai, M., Ko, C.H. and Ryan, J.N., 2000, Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environmental Science & Technology, 34, 2143-2148. https://doi.org/10.1021/es9910309
  19. Fadare, O.O. and Okoffo, E.D., 2020, Covid-19 face masks: A potential source of microplastic fibers in the environment. The Science of the Total Environment, 737, 140279. https://doi.org/10.1016/j.scitotenv.2020.140279
  20. Fisher-Power, L.M. and Cheng, T., 2018, Nanoscale titanium dioxide (nTiO2) transport in natural sediments: importance of soil organic matter and Fe/Al oxyhydroxides. Environmental Science & Technology, 52, 2668-2676. https://doi.org/10.1021/acs.est.7b05062
  21. Franchi, A. and O'Melia, C.R., 2003, Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environmental Science & Technology, 37, 1122-1129. https://doi.org/10.1021/es015566h
  22. Gregory, M.R., 1996, Plastic 'scrubbers' in hand cleansers: A further (and minor) source for marine pollution identified. Marine Pollution Bulletin, 32, 867-871. https://doi.org/10.1016/S0025-326X(96)00047-1
  23. Gu, B., Wu, W.M., Ginder-Vogel, M.A., Yan, H., Fields, M.W., Zhou, J., Fendorf, S., Criddle, C.S. and Jardine, P.M., 2005, Bioreduction of uranium in a contaminated soil column. Environmental Science & Technology, 39, 4841-4847. https://doi.org/10.1021/es050011y
  24. He, F., Zhang, M., Qian, T. and Zhao, D., 2009, Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. Journal of Colloid and Interface Science, 334, 96-102. https://doi.org/10.1016/j.jcis.2009.02.058
  25. He, L., Rong, H., Wu, D., Li, M., Wang, C. and Tong, M., 2020, Influence of biofilm on the transport and deposition behaviors of nano-and micro-plastic particles in quartz sand. Water Research, 178, 115808. https://doi.org/10.1016/j.watres.2020.115808
  26. Hernandez, L.M., Yousefi, N. and Tufenkji, N., 2017, Are there nanoplastics in your personal care products?. Environmental Science & Technology Letters, 4, 280-285. https://doi.org/10.1021/acs.estlett.7b00187
  27. Hildebrandt, L., Voigt, N., Zimmermann, T., Reese, A. and Proefrock, D., 2019, Evaluation of continuous flow centrifugation as an alternative technique to sample microplastic from water bodies. Marine Environmental Research, 151, 104768. https://doi.org/10.1016/j.marenvres.2019.104768
  28. Hurley, R.R. and Nizzetto, L., 2018, Fate and occurrence of micro (nano) plastics in soils: Knowledge gaps and possible risks. Current Opinion in Environmental Science & Health, 1, 6-11. https://doi.org/10.1016/j.coesh.2017.10.006
  29. Kanazawa, K.K. and Gordon II, J.G., 1985, The oscillation frequency of a quartz resonator in contact with liquid. Analytica Chimica Acta, 175, 99-105. https://doi.org/10.1016/S0003-2670(00)82721-X
  30. Kim, H.J., Phenrat, T., Tilton, R.D. and Lowry, G.V., 2012, Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. Journal of Colloid and Interface Science, 370, 1-10. https://doi.org/10.1016/j.jcis.2011.12.059
  31. Johansen, M.P., Prentice, E., Cresswell, T. and Howell, N., 2018, Initial data on adsorption of Cs and Sr to the surfaces of microplastics with biofilm. Journal of Environmental Radioactivity, 190, 130-133. https://doi.org/10.1016/j.jenvrad.2018.05.001
  32. Lapointe, M., Farner, J.M., Hernandez, L.M. and Tufenkji, N., 2020, Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environmental Science & Technology, 54, 8719-8727. https://doi.org/10.1021/acs.est.0c00712
  33. Liu, X., Chen, G. and Su, C., 2012, Influence of collector surface composition and water chemistry on the deposition of cerium dioxide nanoparticles: QCM-D and column experiment approaches. Environmental Science & Technology, 46, 6681-6688. https://doi.org/10.1021/es300883q
  34. Lwanga, E.H., Vega, J.M., Quej, V.K., de los Angeles Chi, J., del Cid, L.S., Chi, C., Segura, G.E., Gertsen, H., Salanki, T., van der Ploeg, M., Koelmans, A.A. and Geissen, V., 2017, Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7, 1-7. https://doi.org/10.1038/s41598-016-0028-x
  35. Nattich-Rak, M., Adamczyk, Z., Sadowska, M., Morga, M. and Ocwieja, M., 2012, Hematite nanoparticle monolayers on mica: Characterization by colloid deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 412, 72-81. https://doi.org/10.1016/j.colsurfa.2012.07.018
  36. Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Klaessig, F., Castranova, V. and Thompson, M., 2009, Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8, 543-557. https://doi.org/10.1038/nmat2442
  37. Ng, E., Lwanga, E.H., Eldridge, S.M., Johnston, P., Hu, H., Geissen, V. and Chen, D., 2018, An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377-1388. https://doi.org/10.1016/j.scitotenv.2018.01.341
  38. Nizzetto, L., Futter, M. and Langaas, S., 2016, Are Agricultural Soils Dumps for Microplastics of Urban Origin?. Environmental Science & Technology, 50, 10777-10779. https://doi.org/10.1021/acs.est.6b04140
  39. Nomura, T. and Hattori, O., 1980, Determination of micromolar concentrations of cyanide in solution with a piezoelectric detector. Analytica Chimica Acta, 115, 323-326. https://doi.org/10.1016/S0003-2670(01)93171-X
  40. Notley, S.M., Biggs, S., Craig, V.S. and Wagberg, L., 2004, Adsorbed layer structure of a weak polyelectrolyte studied by colloidal probe microscopy and QCM-D as a function of pH and ionic strength. Physical Chemistry Chemical Physics, 6, 2379-2386. https://doi.org/10.1039/b401376j
  41. Magal, E., Weisbrod, N., Yechieli, Y., Walker, S.L. and Yakirevich, A., 2011, Colloid transport in porous media: impact of hyper-saline solutions. Water Research, 45, 3521-3532. https://doi.org/10.1016/j.watres.2011.04.021
  42. Mattsson, K., Johnson, E.V., Malmendal, A., Linse, S., Hansson, L. and Cedervall, T., 2017, Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 7, 1-7. https://doi.org/10.1038/s41598-016-0028-x
  43. Mattsson, K., Hansson, L.A. and Cedervall, T., 2015, Nanoplastics in the aquatic environment. Environmental Science: Processes & Impacts, 17, 1712-1721. https://doi.org/10.1039/c5em00227c
  44. Millero, F.J., Hubinger, S., Fernandez, M. and Garnett, S., 1987, Oxidation of H2S in seawater as a function of temperature, pH, and ionic strength. Environmental Science & Technology, 21, 439-443. https://doi.org/10.1021/es00159a003
  45. Mitzel, M.R., Sand, S., Whalen, J.K. and Tufenkji, N., 2016, Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. Water Research, 92, 113-120. https://doi.org/10.1016/j.watres.2016.01.026
  46. O'Connor, I.A., Golsteijn, L. and Hendriks, A.J., 2016, Review of the partitioning of chemicals into different plastics: Consequences for the risk assessment of marine plastic debris. Marine Pollution Bulletin, 113, 17-24. https://doi.org/10.1016/j.marpolbul.2016.07.021
  47. Panno, S.V., Kelly, W.R., Scott, J., Zheng, W., McNeish, R.E., Holm, N., Hoellein, T.J. and Baranski, E.L., 2019, Microplastic contamination in karst groundwater systems. Ground Water, 57, 189-196. https://doi.org/10.1111/gwat.12862
  48. Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M. and Tufenkji, N., 2010, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environmental Science & Technology, 44, 6532-6549. https://doi.org/10.1021/es100598h
  49. Powell, B.A., Dai, Z., Zavarin, M., Zhao, P. and Kersting, A.B., 2011, Stabilization of plutonium nano-colloids by epitaxial distortion on mineral surfaces. Environmental Science & Technology, 45, 2698-2703. https://doi.org/10.1021/es1033487
  50. Quevedo, I.R., Olsson, A.L., Clark, R.J., Veinot, J.G. and Tufenkji, N., 2014, Interpreting deposition behavior of polydisperse surface-modified nanoparticles using QCM-D and sand-packed columns. Environmental Engineering Science, 31, 326-337. https://doi.org/10.1089/ees.2013.0302
  51. Quevedo, I.R. and Tufenkji, N., 2012, Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand. Environmental Science & Technology, 46, 4449-4457. https://doi.org/10.1021/es2045458
  52. Sauerbrey, G., 1959, The use of quartz crystal oscillators for weighing thin layers and for microweighing. Zeitschrift fur Physik, 155, 206-222. https://doi.org/10.1007/BF01337937
  53. Seymour, M.B., Chen, G., Su, C. and Li, Y., 2013, Transport and retention of colloids in porous media: does shape really matter?. Environmental Science & Technology, 47, 8391-8398. https://doi.org/10.1021/es4016124
  54. Singh, N., Tiwari, E., Khandelwal, N. and Darbha, G.K., 2019, Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environmental Science: Nano, 6, 2968-2976. https://doi.org/10.1039/C9EN00557A
  55. Sobhani, Z., Lei, Y., Tang, Y., Wu, L., Zhang, X., Naidu, R., Megharaj, M. and Fang, C., 2020, Microplastics generated when opening plastic packaging. Scientific Reports, 10, 1-7. https://doi.org/10.1038/s41598-019-56847-4
  56. Song, Y.K., Hong, S.H., Eo, S., Han, G.M. and Shim, W.J., 2020, Rapid Production of Micro-and Nanoplastics by Fragmentation of Expanded Polystyrene Exposed to Sunlight. Environmental Science & Technology, 54, 11191-11200. https://doi.org/10.1021/acs.est.0c02288
  57. Song, Z., Yang, X., Chen, F., Zhao, F., Zhao, Y., Ruan, L., Wang, Y. and Yang, Y., 2019, Fate and transport of nanoplastics in complex natural aquifer media: Effect of particle size and surface functionalization. Science of the Total Environment, 669, 120-128. https://doi.org/10.1016/j.scitotenv.2019.03.102
  58. Sun, P., Shijirbaatar, A., Fang, J., Owens, G., Lin, D. and Zhang, K., 2015, Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns. Science of the Total Environment, 505, 189-198. https://doi.org/10.1016/j.scitotenv.2014.09.095
  59. Tellechea, E., Johannsmann, D., Steinmetz, N.F., Richter, R.P. and Reviakine, I., 2009, Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir, 25, 5177-5184. https://doi.org/10.1021/la803912p
  60. Trauscht, J., Pazmino, E. and Johnson, W.P., 2015, Prediction of nanoparticle and colloid attachment on unfavorable mineral surfaces using representative discrete heterogeneity. Langmuir : The ACS Journal of Surfaces and Colloids, 31, 9366-9378. https://doi.org/10.1021/acs.langmuir.5b02369
  61. Treumann, S., Torkzaban, S., Bradford, S.A., Visalakshan, R.M. and Page, D., 2014, An explanation for differences in the process of colloid adsorption in batch and column studies. Journal of Contaminant Hydrology, 164, 219-229 https://doi.org/10.1016/j.jconhyd.2014.06.007
  62. van der Westen, R., Sharma, P.K., De Raedt, H., Vermue, I., van der Mei, H.C. and Busscher, H.J., 2017, Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin-Voigt and Maxwell models. Physical Chemistry Chemical Physics, 19, 25391-25400. https://doi.org/10.1039/C7CP04676F
  63. Voinova, M.V., Rodahl, M., Jonson, M. and Kasemo, B., 1999, Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Physica Scripta, 59, 391. https://doi.org/10.1238/Physica.Regular.059a00391
  64. Wang, R. and Li, Y., 2013, Hydrogel based QCM aptasensor for detection of avian influenzavirus. Biosensors and Bioelectronics, 42, 148-155. https://doi.org/10.1016/j.bios.2012.10.038
  65. Waring, R.H., Harris, R. and Mitchell, S., 2018, Plastic contamination of the food chain: A threat to human health?. Maturitas, 115, 64-68. https://doi.org/10.1016/j.maturitas.2018.06.010
  66. Wright, S.L. and Kelly, F.J., 2017, Plastic and human health: a micro issue?. Environmental Science & Technology, 51, 6634-6647. https://doi.org/10.1021/acs.est.7b00423
  67. Wu, X., Lyu, X., Li, Z., Gao, B., Zeng, X., Wu, J. and Sun, Y., 2020, Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type. Science of The Total Environment, 707, 136065. https://doi.org/10.1016/j.scitotenv.2019.136065
  68. Xiao, L., Zheng, Z., Irgum, K. and Andersson, P.L., 2020, Studies of emission processes of polymer additives into water using quartz crystal Microbalance-A case study on organophosphate esters. Environmental Science & Technology, 54, 4876-4885. https://doi.org/10.1021/acs.est.9b07607
  69. Xu, D., Hodges, C., Ding, Y., Biggs, S., Brooker, A. and York, D., 2010, A QCM study on the adsorption of colloidal laponite at the solid/liquid interface. Langmuir, 26, 8366-8372. https://doi.org/10.1021/la904784a
  70. Zhang, Q., Raoof, A. and Hassanizadeh, S.M., 2015, Pore‐Scale Study of Flow Rate on Colloid Attachment and Remobilization in a Saturated Micromodel. Journal of Environmental Quality, 44, 1376-1383. https://doi.org/10.2134/jeq2015.01.0058
  71. Zelenka, J., 1986, Piezoelectric Resonators and their Applications, Elsevier, Amstredam, 302p.
  72. Zuddas, P. and Mucci, A., 1998, Kinetics of calcite precipitation from seawater: II. The influence of the ionic strength. Geochimica et Cosmochimica Acta, 62, 757-766. https://doi.org/10.1016/S0016-7037(98)00026-X