DOI QR코드

DOI QR Code

Development of High-Durability Ceramic Hollow Fiber and Performance Evaluation of Contact Membrane Process according to Pressure Conditions

고내구성 세라믹 중공사 개발과 압력 조건에 따른 접촉막 공정의 특성 평가

  • Lee, Seung Hwan (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Jeong, Byeong Jun (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Shin, Min Chang (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Zhuang, Xuelong (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Jung, Jiwon (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Lee, Yeon Jun (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Won, Dongyeon (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Jung Hoon (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 이승환 (동국대학교 화공생물공학과) ;
  • 정병준 (동국대학교 화공생물공학과) ;
  • 신민창 (동국대학교 화공생물공학과) ;
  • 장학룡 (동국대학교 화공생물공학과) ;
  • 정지원 (동국대학교 화공생물공학과) ;
  • 이연준 (동국대학교 화공생물공학과) ;
  • 원동연 (동국대학교 화공생물공학과) ;
  • 박정훈 (동국대학교 화공생물공학과)
  • Received : 2020.11.29
  • Accepted : 2020.12.15
  • Published : 2020.12.31

Abstract

In this study, CO2 separation experiment was performed on a CH4/CO2 mixed gas using a ceramic hollow fiber membrane contactor module (HFMC). In order to fabricate high-durability HFMC, a high-durability hollow fiber membrane was prepared and evaluated. HFMC was fabricated using the prepared hollow fiber membrane, and the experiment used a mixture of CH4/CO2 (30% CO2, CH4 balance) and monoethanolamine (MEA). During HFMC operation, the effect of gas and absorbent pressure on the CO2 removal efficiency was evaluated. The CO2 removal efficiency increased as the gas pressure increased, and the CO2 absorption flux also showed a tendency to increase with the liquid flow rate. In addition, when the CO2 absorption rate was less than 40%, LTS-1, a counter-current form where the absorbent enters from the bottom, has higher CO2 removal performance than LTS-2, a countercurrent form in which the absorbent enters from the top. and when the absorption rate was 40% or higher, LTS-2 had higher performance than LTS-1.

본 연구에서는 CH4/CO2 혼합가스에서 CO2 분리를 위해 세라믹 중공사 접촉막 모듈(HFMC)을 이용하여 실험을 수행하였다. 고 내구성의 HFMC를 제작하기 위해, 고강도의 중공사막을 제조하여 평가하였다. 제조한 중공사막을 이용하여 HFMC를 제작하였고, 실험은 CH4/CO2 혼합 기체(30% CO2, CH4 balance)와 monoethanolamine (MEA)를 사용하였다. HFMC 운전 중 기체와 흡수제의 압력이 CO2 제거 효율에 어떠한 영향을 주는지 평가하였다. CO2 제거 효율은 기체압력이 증가함에 따라 같이 상승하였으며, CO2 흡수 flux 또한 액체유량과 함께 증가하는 추세를 보였다. 또한 CO2 흡수율이 40% 이하일 때는 흡수제가 아래쪽에서 들어가는 향류형태인 LTS-1이 흡수제가 위쪽에서 들어가는 향류형태인 LTS-2보다 CO2 제거 성능이 높았으며, 흡수율이 40% 이상일 때는 LTS-2가 LTS-1보다 성능이 높았다.

Keywords

References

  1. K. Trenberth and P. Jones, "Ch. 3, Observations: Atmospheric surface and climate change, section 3.2.2.2: Urban heat islands and land use effects archived", 웨이백 머신, p. 244, in IPCC AR4 WG1 (2007).
  2. N. Takahashi, Y. Furuta, H. Fukunaga, T. Takatsuka, H. Mano, and Y. Fujioka, "Effects of membrane properties on CO2 recovery performance in a gas absorption membrane contactor", Energy Procedia., 4, 693 (2011). https://doi.org/10.1016/j.egypro.2011.01.107
  3. Y. Zhang, "Warming of the climate system is unequivocal: highlights of the fourth IPCC assessment report", IPCC, Synthesis Report (2007).
  4. R. Pachauri and A. Reisinger, "Climate change 2007 synthesis report", A Report of the Intergovernmental Panel on Climate Change (2007).
  5. P. Lepert and F. Brillet, "The overall effects of road works on global wraming gas emissions", Transportation Research Part D: Transport and Environment, 14 (2009).
  6. Y. C. Park, J. S. Lee, J. H. Moon, B. M. Min, D. M. Shim, and H. J. Sung, "Performance comparison of aqueous MEA and AMP solutions for biogas upgrading", Korean J. Chem. Eng., 34(3), 921 (2017). https://doi.org/10.1007/s11814-016-0346-5
  7. S. Atchariyawut, R. Jiraratananon, and R. Wang, "Separation of CO2 from CH4 by using gas-liquid membrane contacting process", J. Membr. Sci., 304 (1-2), 163 (2007). https://doi.org/10.1016/j.memsci.2007.07.030
  8. S. Atchariyawut, R. Jiraratananon, and R. Wang, "Mass transfer study and modeling of gas-liquid membrane contacting process by multistage cascade model for CO2 absorption", Sep. Purif. Technol., 63 (1), 15 (2008). https://doi.org/10.1016/j.seppur.2008.03.005
  9. N. Nabian, A. A. Ghoreyshi, A. Rahimpour, and M. Shakeri, "Performance evaluation and mass transfer study of CO2 absorption in flat sheet membrane contactor using novel porous polysulfone membrane", Korean J. Chem. Eng., 32(11), 2204 (2015). https://doi.org/10.1007/s11814-015-0027-9
  10. H. J. Lee and J. H. Park, "Effect of hydrophobic modification on carbon dioxide absorption using porous alumina (Al2O3) hollow fiber membrane contactor", J. Membr. Sci., 518, 79 (2016). https://doi.org/10.1016/j.memsci.2016.06.038
  11. H. C. Pulgarin and M. Albano, "sintering and microstrusture of Al2O3 and Al2O3-ZrO2 ceramics", Procedia Mater. Sci., 8, 180 (2015). https://doi.org/10.1016/j.mspro.2015.04.062
  12. H. J. Lee, Y. G. Park, M. K. Kim, S. H. Lee, and J. H. Park, "Study on CO2 absorption performance of lab-scale ceramic hollow fiber membrane contactor by gas/liquid flow direction and module design", Sep. Purif. Technol., 220, 189 (2019). https://doi.org/10.1016/j.seppur.2019.03.011
  13. H. J. Lee, E. Magnone, and J. H. Park, "Preparation, characterization and laboratory-scale application of modified hydrophobic aluminum oxide hollow fiber membrane for CO2 capture using H2O as low-cost absorbent", J. Membr. Sci., 494, 143 (2015). https://doi.org/10.1016/j.memsci.2015.07.042