DOI QR코드

DOI QR Code

A LSPIV Measurement of the Unsteady Rip Current at Successive Ends of Breaking Wave Crests

연속된 쇄파 파봉선 끝단의 비정상 이안류 LSPIV 계측연구

  • Choi, Junwoo (Coastal and Harbor Research Division, Korea Institute of Civil Engineering & Building Technology)
  • 최준우 (한국건설기술연구원 해안항만연구실)
  • Received : 2020.11.10
  • Accepted : 2020.11.30
  • Published : 2020.12.31

Abstract

The experiment of unsteady rip current generated at the successive ends of breaking wave crests of honeycomb pattern waves was conducted in a laboratory wave basin, and its time-varying evolution was observed by using ortho-rectified images. The present experiment utilized the generation of a quasi nodal line of the honeycomb-pattern waves formed by out-of-phase motion of two piston-type wavemakers arranged in the transverse direction, instead of the original honeycomb pattern waves which are generated when two wave trains propagate with slightly different wave directions. The velocities of rip current were measured by using the LSPIV (Large-Scale Particle Image Velocimetry) technique. As a result, the unsteady rip current was generated between successive ends of wave crests, and evolved with its shear fluctuations in this experiment. Also, the time series of LSPIV velocity of the unsteady rip current showd its short component due to waves and its long component due to wave-induced currents.

벌집구조 파에서 나타나는 연속된 쇄파 파봉선 끝단사이로 발달하는 이안류를 수리실험을 통해 재현하고 시간에 따라 발달하는 과정을 정사보정 영상을 통해 관찰하였다. 서로 다른 두 협각의 파랑 중첩에 의해 생성되는 벌집구조 파를 재현하는 대신에 조파장치를 횡방향 두 그룹으로 나누어 역 위상으로 구동시켜 규칙파를 조파하므로 유사 벌집구조 파형을 생성하여 실험을 수행하였다. 수리 실험에서 재현된 이안류의 유속을 계측하기 위해 LSPIV (Large Scale Particle Image Velocimetry) 기법을 이용하였다. 관측을 통해 노드영역을 따라 생성되는 이안류를 확인하였고, 시간에 따라 흐름이 전단 파동(shear fluctuation)을 포함하여 발달하는 비정상 이안류의 유속 분포를 제시하였다. 또한, LSPIV 기법으로 계측된 유속의 시계열을 통하여 파주기 및 상대적으로 긴 주기의 요동에 따른 유속 성분을 확인할 수 있었다.

Keywords

References

  1. Bowen, A. and Inman, D. (1969). Rip currents 2. Laboratory and field observations. J. Geophys. Res., 74(C3), 5479-5490. https://doi.org/10.1029/JC074i023p05479
  2. Castelle, B., Michallet, B., Marieu, V., Leckler, F., Dubardier, B., Lambert, A., Berni, C., Bonneton, P., Barthelemy, E. and Bouchette, F. (2010). Laboratory experiment on rip current circulations over a moveable bed: Drifter measurements. J. Geophys. Res., 115, C12008. https://doi.org/10.1029/2010jc006343
  3. Choi, J., Kirby, J.T. and Yoon, S.B. (2015). Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions. Coastal Engineering, 101, 17-34. https://doi.org/10.1016/j.coastaleng.2015.04.005
  4. Choi, J., Park, W.K., Bae, J.S. and Yoon, S.B. (2012). Numerical study on a dominant mechanism of rip current at Haeundae beach : Honeycomb pattern of waves. J. the Korean Society of Civil Engineers, 32(5B), 321-329 (in Korean). https://doi.org/10.12652/Ksce.2012.32.5B.321
  5. Choi, J. and Roh, M. (2020). A Laboratory experiment of rip currents between the ends of breaking wave crests. Coastal Engineering, In print.
  6. Choi, J., Roh, M. and Hwang, H.S. (2018). Observing the laboratory interaction of undertow and non-linear wave motion over barred and non-barred beaches to determine beach profile evolution in the surf zone. Journal of Coastal Research, 34(6), 1449-1459. https://doi.org/10.2112/jcoastres-d-17-00106.1
  7. Choi, J., Shin, C.H. and Yoon, S.B. (2013). Numerical study on sea state parameters affecting rip current at Haeundae beach : Wave period, height, direction and tidal elevation. Journal of Korea Water Resources Association, 46(2), 205-218 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.2.205
  8. Clark, D.B., Elgar, S. and Raubenheimer, B. (2012). Vorticity generation by short-crested wave breaking. Geophysical Research Letters, 39, L24604, doi:10.1029/2012GL054034, 20.
  9. Dalrymple, R.A. (1975). A mechanism for rip current generation on an open coast. J. Geophys. Res., 80, 3485-3487. https://doi.org/10.1029/JC080i024p03485
  10. Dalrymple, R.A. (1978). Rip currents and their causes. 16th international Conference of Coastal Engineering, Hamburg, 1414-1427.
  11. Dean, R.G. (1991). Equilibrium beach profiles: Principle and applications. Journal of Coastal Research, 7(1), 53-84.
  12. Feddersen, F. (2014). The generation of surfzone eddies in a strong alongshore current. J. Phys. Oceanogr., 44, 600-617. https://doi.org/10.1175/JPO-D-13-051.1
  13. Fujita, I., Muste, M. and Kruger A. (1998). Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of Hydraulic Research, 36(3), 397-414. https://doi.org/10.1080/00221689809498626
  14. Haas, K.A. and Svendsen, I.A. (2002). Laboratory measurements of the vertical structure of rip currents. J. Geophys. Res., 107(C5), 3047. https://doi.org/10.1029/2001JC000911
  15. Haller, M., Dalrymple, R. and Svendsen, I.A. (1997). Rip channels and nearshore circulation: Experiments. In Proc. Coastal Dynamics, 594-603.
  16. Heckbert, P.S. (1989). Fundamentals of texture mapping and image warping. Marter's Thesis, University of California, Berkeley.
  17. Johnson, D. and Pattiaratchi, C. (2006). Boussinesq modelling of transient rip currents. Coastal Engineering, 53, 419-439. https://doi.org/10.1016/j.coastaleng.2005.11.005
  18. Kantoush, S.A., Schleiss, A.J., Sumi, T. and Murasaki, M. (2011). LSPIV implementation for environmental flow in various laboratory and field cases. Journal of Hydro-environment Research, 5, 263-276. https://doi.org/10.1016/j.jher.2011.07.002
  19. Kennedy, A.B. and Thomas, D. (2004). Drifter measurements in a laboratory rip current. J. Geophys. Res., 109, C08005.
  20. Kriebel, D.L., Dally, W.R. and Dean, R.G. (1986). Undistorted froude model for surf zone sediment transport. Coastal Eng., 20, 1296-1310.
  21. Peregrine, D.H. (1998). Surf zone currents. Theoret. Comput. Fluid Dyn., 10, 295-309. https://doi.org/10.1007/s001620050065
  22. Peregrine, D.H. (1999). Large-scale vorticity generation by breakers in shallow and deep water. Eur. J. Mech. B, 18, 403-408. https://doi.org/10.1016/S0997-7546(99)80037-5
  23. Rouse, H. (1937). Nomogram for the settling velocity of spheres. National Research Council, Washington, DC. 57-64.
  24. Shin, C.H., Noh, H.K., Yoon, S.B. and Choi, J. (2014). Understanding of rip current generation mechanism at Haeundae beach of Korea: Honeycomb waves. J. Coastal Res., SI(72), 11-15.
  25. Tang, E.-S. and Dalrymple, R.A. (1989). Nearshore circulation: rip currents and wave groups. Advances in Coastal and Ocean Engineering. Plenum Press, New York, 205-230.
  26. Wind, H.G. and Vreugdenhil, B.B. (1986). Rip-current generation near structures. J. Fluid Mech., 171, 459-476. https://doi.org/10.1017/S0022112086001520
  27. Yoon, S.B., Kwon, S.J., Bae, J.S. and Choi, J. (2012). Investigation of characteristics of rip current at Haeundae beach based on observation analysis and numerical experiments. J. of the Korean Society of Civil Engineers, 32(4B), 243-251 (in Korean). https://doi.org/10.12652/Ksce.2012.32.4B.243