DOI QR코드

DOI QR Code

Development and Verification of NEMO based Regional Storm Surge Forecasting System

NEMO 모델을 이용한 지역 폭풍해일예측시스템 개발 및 검증

  • La, Nary (Marine & Asian Dust Modelling Team, Operational Systems Development Department, National Institute of Meteorological Science) ;
  • An, Byoung Woong (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Science) ;
  • Kang, KiRyong (Marine & Asian Dust Modelling Team, Operational Systems Development Department, National Institute of Meteorological Science) ;
  • Chang, Pil-Hun (Marine & Asian Dust Modelling Team, Operational Systems Development Department, National Institute of Meteorological Science)
  • 라나리 (국립기상과학원 현업운영개발부 예측모델연구팀) ;
  • 안병웅 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 강기룡 (국립기상과학원 현업운영개발부 예측모델연구팀) ;
  • 장필훈 (국립기상과학원 현업운영개발부 예측모델연구팀)
  • Received : 2020.09.11
  • Accepted : 2020.11.03
  • Published : 2020.12.31

Abstract

In this study we established an operational storm-surge system for the northwestern pacific ocean, based on the NEMO (Nucleus for European Modeling of the Ocean). The system consists of the tide and the surge models. For more accurate storm surge prediction, it can be completed not only by applying more precise depth data, but also by optimal parameterization at the boundaries of the atmosphere and ocean. To this end, we conducted several sensitivity experiments related to the application of available bathymetry data, ocean bottom friction coefficient, and wind stress and air pressure on the ocean surface during August~September 2018 and the case of typhoon SOULIK. The results of comparison and verification are presented here, and they are compared with POM (Princeton Ocean Model) based Regional Tide Surge forecasting Model (RTSM). The results showed that the RTSM_NEMO model had a 29% and 20% decrease in Bias and RMSE respectively compared to the RTSM_POM model, and that the RTSM_NEMO model had a lower overall error than the RTSM_POM model for the case of typhoon SOULIK.

본 연구에서는 한반도 중심 해역을 포함하는 북서태평양 영역에서의 폭풍해일 예측을 위해 NEMO(Nucleus for European Modelling of the Ocean) 모형을 이용하여 지역규모의 폭풍해일 예측시스템을 구축하였다. 이 시스템은 조석과 해일 예측으로 구성되어 있으며보다 정확한 폭풍해일을 예측하기 위해 수심자료와 대기-해양 경계에서의 모수화(parameterization) 최적화 과정을 수행하였다. 이를 통해 2018년 8~10월과 태풍 솔릭 사례에 대하여 국립해양조사원 조위 관측자료를 이용한 통계 방법을 적용하여 검증을 수행하고, 이를 POM(Princeton Ocean Model) 기반의 예측모델 결과와 비교하였다. 수행결과 NEMO 기반의 폭풍해일 예측시스템이 POM 기반의 예측결과에 비해 평균오차와 RMSE가 각각 약 29%와 약 20% 감소한 것으로 나타났으며, 태풍 시기에도 NEMO 기반 예측결과에서 전반적으로 오차가 낮게 나타났다.

Keywords

References

  1. Becker, J.J. and Sandwell, D.T. (2006). SRTM30_PLUS: SRTM30, coastal & ridge multibeam, estimated topography. Electronic Journal.
  2. Brown, J.M. and Wolf, J. (2009). Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress. Continental Shelf Research, 29(10), 1329-1342. https://doi.org/10.1016/j.csr.2009.03.004
  3. Charnock, H. (1955). Wind stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350), 639-640. https://doi.org/10.1002/qj.49708135027
  4. Egbert, G.D., Bennett, A.F. and Foreman, M.G.G. (1994). Topex/Poseidon tides estimated using a global inverse model. Journal of Geophysical Research, 99, 24821-24852. https://doi.org/10.1029/94JC01894
  5. Egbert, G.D. and Erofeeva, S.Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19, 183-204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  6. Goodwillie, A. (2003). User guide to the GEBCO one minute grid. Centenary edition of the GEBCO digidal Atlas, GEBCO.
  7. Ku, H., Maeng, J.H. and Cho, K. (2019). Deterministic estimation of typhoon-induced surges and inundation on Korean coastal regions. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), 1-8. https://doi.org/10.9765/KSCOE.2019.31.1.1
  8. Kinsman, B. (1984). Wind waves: their generation and propagation on the ocean surface. Courier Corporation.
  9. Madec, G. and the NEMO team. (2016). NEMO reference manual v3.6, Tech. Rep. 27 ISSN 1288-1619, Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL).
  10. Mastenbroek, C., Burgers, G. and Janssen, P.A.E.M. (1993). The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. Journal of Physical Oceanography, 23(8), 1856-1866. https://doi.org/10.1175/1520-0485(1993)023<1856:TDCOAW>2.0.CO;2
  11. Mellor, G.L. (1998). Users guide for a three dimensional, primitive equation, numerical ocean model. Princeton, NJ: Program in Atmospheric and Oceanic Sciences, Princeton University.
  12. National Institute of Meteorological Research (2017). Development of Marine Meteorology Monitoring and Next-generation Ocean Forecasting System(IV). (in Korean).
  13. Soontiens, N., Allen, S., Latornell, D., Le Souef, K., Machuca, I., Paquin, J.-P., Lu, Y., Thompson, K. and Korabel, V. (2016). Storm surges in the Strait of Georgia simulated with a regional model. Atmosphere Ocean, 54(1), 1-21. https://doi.org/10.1080/07055900.2015.1108899
  14. You, S.H. and Seo, J.W. (2009). Numerical study of storm surges and tide around Korea using operational ocean model. Marine Geodesy, 32(2), 243-263. https://doi.org/10.1080/01490410902869656
  15. Wu, J. (1982). Wind-stress coefficients over sea surface from breeze to hurricane. Journal of Geophysical Research, 87(C12), 9704-9706. https://doi.org/10.1029/JC087iC12p09704
  16. Williams, J.A. and Flather, R.A. (2000). Interfacing the operational storm surge model to a new mesoscale atmospheric model. POL internal document 127, Proudman Oceanographic Laboratory