DOI QR코드

DOI QR Code

3D-QSAR, Docking and Molecular Dynamics Simulation Study of C-Glycosylflavones as GSK-3β Inhibitors

  • Ghosh, Suparna (Department of Biomedical Sciences, College of Medicine, Chosun University) ;
  • Keretsu, Seketoulie (Department of Biomedical Sciences, College of Medicine, Chosun University) ;
  • Cho, Seung Joo (Department of Biomedical Sciences, College of Medicine, Chosun University)
  • 투고 : 2020.10.02
  • 심사 : 2020.11.28
  • 발행 : 2020.12.31

초록

Abnormal regulation, hyperphosphorylation, and aggregation of the tau protein are the hallmark of several types of dementia, including Alzheimer's Disease. Increased activity of Glycogen Synthase Kinase-3β (GSK-3β) in the Central Nervous System (CNS), increased the tau hyperphosphorylation and caused the neurofibrillary tangles (NFTs) formation in the brain cells. Over the last two decades, numerous adenosine triphosphate (ATP) competitive inhibitors have been discovered that show inhibitory activity against GSK-3β. But these compounds exhibited off-target effects which motivated researchers to find new GSK-3β inhibitors. In the present study, we have collected the dataset of 31 C-Glycosylflavones derivatives that showed inhibitory activity against GSK-3β. Among the dataset, the most active compound was docked with the GSK-3β and molecular dynamics (MD) simulation was performed for 50 ns. Based on the 50 ns MD pose of the most active compound, the other dataset compounds were sketched, minimized, and aligned. The 3D-QSAR based Comparative Molecular Field Analysis (CoMFA) model was developed, which showed a reasonable value of q2=0.664 and r2=0.920. The contour maps generated based on the CoMFA model elaborated on the favorable substitutions at the R2 position. This study could assist in the future development of new GSK-3β inhibitors.

키워드

참고문헌

  1. Hoover, B. R.; Reed, M. N.; Su, J.; Penrod, R. D.; Kotilinek, L. A.; Grant, M. K.; Pitstick, R.; Carlson, G. A.; Lanier, L. M.; Yuan, L.-L., Tau Mislocalization to Dendritic Spines Mediates Synaptic Dysfunction Independently of Neurodegeneration. Neuron 2010, 68, 1067-1081. https://doi.org/10.1016/j.neuron.2010.11.030
  2. Miller, E. C.; Teravskis, P. J.; Dummer, B. W.; Zhao, X.; Huganir, R. L.; Liao, D., Tau Phosphorylation and Tau Mislocalization Mediate Soluble Aβ Oligomer‐Induced Ampa Glutamate Receptor Signaling Deficits. European Journal of Neuroscience 2014, 39, 1214-1224. https://doi.org/10.1111/ejn.12507
  3. Probst, A.; Tolnay, M.; Langui, D.; G oedert, M.; Spillantini, M., Pick's Disease: Hyperphosphorylated Tau Protein Segregates to the Somatoaxonal Compartment. Acta neuropathologica 1996, 92, 588-596. https://doi.org/10.1007/s004010050565
  4. Qu, Z.-S.; Li, L.; Sun, X.-J.; Zhao, Y.-W.; Zhang, J.; Geng, Z.; Fu, J.-L.; Ren, Q.-G., Glycogen Synthase Kinase-3 Regulates Production of Amyloid-Β Peptides and Tau Phosphorylation in Diabetic Rat Brain. The Scientific World Journal 2014, 2014, 878123.
  5. Reddy, P. H., Amyloid Beta-Induced Glycogen Synthase Kinase 3β Phosphorylated Vdac1 in Alzheimer's Disease: Implications for Synaptic Dysfunction and Neuronal Damage. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2013, 1832, 1913-1921. https://doi.org/10.1016/j.bbadis.2013.06.012
  6. Sofola, O.; Kerr, F.; Rogers, I.; Killick, R.; Augustin, H.; Gandy, C.; Allen, M. J.; Hardy, J.; Lovestone, S.; Partridge, L., Inhibition of Gsk-3 Ameliorates Aβ Pathology in an Adult-Onset Drosophila Model of Alzheimer's Disease. PLoS Genet 2010, 6, e1001087. https://doi.org/10.1371/journal.pgen.1001087
  7. Beurel, E.; Grieco, S. F.; Jope, R. S., Glycogen Synthase Kinase-3 (Gsk3): Regulation, Actions, and Diseases. Pharmacology & therapeutics 2015, 148, 114-131. https://doi.org/10.1016/j.pharmthera.2014.11.016
  8. Hernandez, F.; Lucas, J. J.; Avila, J., Gsk3 and Tau: Two Convergence Points in Alzheimer's Disease. Journal of Alzheimer's disease 2013, 33, S141-S144. https://doi.org/10.3233/JAD-2012-129025
  9. Medina, M.; Garrido, J. J.; Wandosell, F. G., Modulation of Gsk-3 as a Therapeutic Strategy on Tau Pathologies. Frontiers in molecular neuroscience 2011, 4, 24. https://doi.org/10.3389/fnmol.2011.00024
  10. Toral-Rios, D.; Pichardo-Rojas, P. S.; Alonso-Vanegas, M.; Campos-Peña, V., Gsk3β and Tau Protein in Alzheimer's Disease and Epilepsy. Frontiers in Cellular Neuroscience 2020, 14.
  11. Boutajangout, A.; M Sigurdsson, E.; K Krishnamurthy, P., Tau as a Therapeutic Target for Alzheimer's Disease. Current Alzheimer Research 2011, 8, 666-677. https://doi.org/10.2174/156720511796717195
  12. Ko, H.-J.; Chiou, S.-J.; Wong, Y.-H.; Wang, Y.-H.; Lai, Y.-L.; Chou, C.-H.; Wang, C.; Loh, J.-K.; Lieu, A.-S.; Cheng, J.-T., Gskip-Mediated Anchoring Increases Phosphorylation of Tau by Pka but Not by Gsk3beta Via Camp/Pka/Gskip/Gsk3/Tau Axis Signaling in Cerebrospinal Fluid and Ips Cells in Alzheimer Disease. Journal of clinical medicine 2019, 8, 1751. https://doi.org/10.3390/jcm8101751
  13. Eldar-Finkelman, H.; Martinez, A., Gsk-3 Inhibitors: Preclinical and Clinical Focus on Cns. Frontiers in molecular neuroscience 2011, 4, 32. https://doi.org/10.3389/fnmol.2011.00032
  14. Khan, I.; Tantray, M. A.; Alam, M. S.; Hamid, H., Natural and Synthetic Bioactive Inhibitors of Glycogen Synthase Kinase. European journal of medicinal chemistry 2017, 125, 464-477. https://doi.org/10.1016/j.ejmech.2016.09.058
  15. Liang, Z.; Li, Q. X., Discovery of Selective, Substrate-Competitive, and Passive Membrane Permeable Glycogen Synthase Kinase-3β Inhibitors: Synthesis, Biological Evaluation, and Molecular Modeling of New C-Glycosylflavones. ACS chemical neuroscience 2018, 9, 1166-1183. https://doi.org/10.1021/acschemneuro.8b00010
  16. Bertrand, J.; Thieffine, S.; Vulpetti, A.; Cristiani, C.; Valsasina, B.; Knapp, S.; Kalisz, H.; Flocco, M., Structural Characterization of the Gsk-3β Active Site Using Selective and Non-Selective AtpMimetic Inhibitors. Journal of molecular biology 2003, 333, 393-407. https://doi.org/10.1016/j.jmb.2003.08.031
  17. Webb, B.; Sali, A., Comparative Protein Structure Modeling Using Modeller. Current protocols in bioinformatics 2016, 54, 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3
  18. Huey, R.; Morris, G. M., Using Autodock 4 with Autodocktools: A Tutorial. The Scripps Research Institute, USA 2008, 54-56.
  19. Keretsu, S.; Bhujbal, S. P.; Cho, S. J., Docking and 3d-Qsar Studies of Hydrazone and Triazole Derivatives for Selective Inhibition of Grk2 over Rock2. Letters in Drug Design & Discovery 2020, 17, 618-632. https://doi.org/10.2174/1570180816666190618105320
  20. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. Journal of computational chemistry 1998, 19, 1639-1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  21. Lindahl, E.; Abraham, M.; Hess, B.; van der Spoel, D., Gromacs 2020 Manual. Version: 2020.
  22. Huang, J.; MacKerell Jr, A. D., Charmm36 All‐Atom Additive Protein Force Field: Validation Based on Comparison to Nmr Data. Journal of computational chemistry 2013, 34, 2135-2145. https://doi.org/10.1002/jcc.23354
  23. Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I., Charmm General Force Field: A Force Field for Drug‐Like Molecules Compatible with the Charmm All‐Atom Additive Biological Force Fields. Journal of computational chemistry 2010, 31, 671-690. https://doi.org/10.1002/jcc.21367
  24. Kumari, R.; Kumar, R.; Consortium, O. S. D. D.; Lynn, A., G_Mmpbsa a Gromacs Tool for High-Throughput Mm-Pbsa Calculations. Journal of chemical information and modeling 2014, 54, 1951-1962. https://doi.org/10.1021/ci500020m
  25. Keretsu, S.; Bhujbal, S. P.; Cho, S. J., Computational Study of Paroxetine-Like Inhibitors Reveals New Molecular Insight to Inhibit Grk2 with Selectivity over Rock1. Scientific reports 2019, 9, 1-14. https://doi.org/10.1038/s41598-018-37186-2
  26. Clark, M.; Cramer III, R. D.; Van Opdenbosch, N., Validation of the General Purpose Tripos 5.2 Force Field. Journal of Computational Chemistry 1989, 10, 982-1012. https://doi.org/10.1002/jcc.540100804
  27. Gadhe, C. G.; Kothandan, G.; Cho, S. J., Large Variation in Electrostatic Contours Upon Addition of Steric Parameters and the Effect of Charge Calculation Schemes in Comfa on Mutagenicity of Mx Analogues. Molecular Simulation 2012, 38, 861-871. https://doi.org/10.1080/08927022.2012.659182
  28. Gadhe, C. G.; Madhavan, T.; Kothandan, G.; Cho, S. J., In Silico Quantitative Structure-Activity Relationship Studies on P-Gp Modulators of Tetrahydroisoquinoline-Ethyl-Phenylamine Series. BMC structural biology 2011, 11, 5. https://doi.org/10.1186/1472-6807-11-5
  29. San Juan, A. A.; Cho, S. J., 3d-Qsar Study of Microsomal Prostaglandin E 2 Synthase (Mpges-1) Inhibitors. Journal of Molecular Modeling 2007, 13, 601-610. https://doi.org/10.1007/s00894-007-0172-0
  30. Bang, S. J.; Cho, S. J., Comparative Molecular Field Analysis (Comfa) and Comparative Molecular Similarity Index Analysis (Comsia) Study of Mutagen X. BULLETIN-KOREAN CHEMICAL SOCIETY 2004, 25, 1525-1530. https://doi.org/10.5012/bkcs.2004.25.10.1525
  31. Pasha, F.; Cho, S. J.; Beg, Y.; Tripathi, Y., Quantum Chemical Qsar Study of Flavones and Their Radical-Scavenging Activity. Medicinal Chemistry Research 2007, 16, 408-417. https://doi.org/10.1007/s00044-007-9060-5
  32. Gobbo, D.; Piretti, V.; Di Martino, R. M. C.; Tripathi, S. K.; Giabbai, B.; Storici, P.; Demitri, N.; Girotto, S.; Decherchi, S.; Cavalli, A., Investigating Drug-Target Residence Time in Kinases through Enhanced Sampling Simulations. Journal of Chemical Theory and Computation 2019, 15, 4646-4659. https://doi.org/10.1021/acs.jctc.9b00104

피인용 문헌

  1. Molecular Modeling Studies of N-phenylpyrimidine-4-amine Derivatives for Inhibiting FMS-like Tyrosine Kinase-3 vol.22, pp.22, 2021, https://doi.org/10.3390/ijms222212511