참고문헌
- Hoover, B. R.; Reed, M. N.; Su, J.; Penrod, R. D.; Kotilinek, L. A.; Grant, M. K.; Pitstick, R.; Carlson, G. A.; Lanier, L. M.; Yuan, L.-L., Tau Mislocalization to Dendritic Spines Mediates Synaptic Dysfunction Independently of Neurodegeneration. Neuron 2010, 68, 1067-1081. https://doi.org/10.1016/j.neuron.2010.11.030
- Miller, E. C.; Teravskis, P. J.; Dummer, B. W.; Zhao, X.; Huganir, R. L.; Liao, D., Tau Phosphorylation and Tau Mislocalization Mediate Soluble Aβ Oligomer‐Induced Ampa Glutamate Receptor Signaling Deficits. European Journal of Neuroscience 2014, 39, 1214-1224. https://doi.org/10.1111/ejn.12507
- Probst, A.; Tolnay, M.; Langui, D.; G oedert, M.; Spillantini, M., Pick's Disease: Hyperphosphorylated Tau Protein Segregates to the Somatoaxonal Compartment. Acta neuropathologica 1996, 92, 588-596. https://doi.org/10.1007/s004010050565
- Qu, Z.-S.; Li, L.; Sun, X.-J.; Zhao, Y.-W.; Zhang, J.; Geng, Z.; Fu, J.-L.; Ren, Q.-G., Glycogen Synthase Kinase-3 Regulates Production of Amyloid-Β Peptides and Tau Phosphorylation in Diabetic Rat Brain. The Scientific World Journal 2014, 2014, 878123.
- Reddy, P. H., Amyloid Beta-Induced Glycogen Synthase Kinase 3β Phosphorylated Vdac1 in Alzheimer's Disease: Implications for Synaptic Dysfunction and Neuronal Damage. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2013, 1832, 1913-1921. https://doi.org/10.1016/j.bbadis.2013.06.012
- Sofola, O.; Kerr, F.; Rogers, I.; Killick, R.; Augustin, H.; Gandy, C.; Allen, M. J.; Hardy, J.; Lovestone, S.; Partridge, L., Inhibition of Gsk-3 Ameliorates Aβ Pathology in an Adult-Onset Drosophila Model of Alzheimer's Disease. PLoS Genet 2010, 6, e1001087. https://doi.org/10.1371/journal.pgen.1001087
- Beurel, E.; Grieco, S. F.; Jope, R. S., Glycogen Synthase Kinase-3 (Gsk3): Regulation, Actions, and Diseases. Pharmacology & therapeutics 2015, 148, 114-131. https://doi.org/10.1016/j.pharmthera.2014.11.016
- Hernandez, F.; Lucas, J. J.; Avila, J., Gsk3 and Tau: Two Convergence Points in Alzheimer's Disease. Journal of Alzheimer's disease 2013, 33, S141-S144. https://doi.org/10.3233/JAD-2012-129025
- Medina, M.; Garrido, J. J.; Wandosell, F. G., Modulation of Gsk-3 as a Therapeutic Strategy on Tau Pathologies. Frontiers in molecular neuroscience 2011, 4, 24. https://doi.org/10.3389/fnmol.2011.00024
- Toral-Rios, D.; Pichardo-Rojas, P. S.; Alonso-Vanegas, M.; Campos-Peña, V., Gsk3β and Tau Protein in Alzheimer's Disease and Epilepsy. Frontiers in Cellular Neuroscience 2020, 14.
- Boutajangout, A.; M Sigurdsson, E.; K Krishnamurthy, P., Tau as a Therapeutic Target for Alzheimer's Disease. Current Alzheimer Research 2011, 8, 666-677. https://doi.org/10.2174/156720511796717195
- Ko, H.-J.; Chiou, S.-J.; Wong, Y.-H.; Wang, Y.-H.; Lai, Y.-L.; Chou, C.-H.; Wang, C.; Loh, J.-K.; Lieu, A.-S.; Cheng, J.-T., Gskip-Mediated Anchoring Increases Phosphorylation of Tau by Pka but Not by Gsk3beta Via Camp/Pka/Gskip/Gsk3/Tau Axis Signaling in Cerebrospinal Fluid and Ips Cells in Alzheimer Disease. Journal of clinical medicine 2019, 8, 1751. https://doi.org/10.3390/jcm8101751
- Eldar-Finkelman, H.; Martinez, A., Gsk-3 Inhibitors: Preclinical and Clinical Focus on Cns. Frontiers in molecular neuroscience 2011, 4, 32. https://doi.org/10.3389/fnmol.2011.00032
- Khan, I.; Tantray, M. A.; Alam, M. S.; Hamid, H., Natural and Synthetic Bioactive Inhibitors of Glycogen Synthase Kinase. European journal of medicinal chemistry 2017, 125, 464-477. https://doi.org/10.1016/j.ejmech.2016.09.058
- Liang, Z.; Li, Q. X., Discovery of Selective, Substrate-Competitive, and Passive Membrane Permeable Glycogen Synthase Kinase-3β Inhibitors: Synthesis, Biological Evaluation, and Molecular Modeling of New C-Glycosylflavones. ACS chemical neuroscience 2018, 9, 1166-1183. https://doi.org/10.1021/acschemneuro.8b00010
- Bertrand, J.; Thieffine, S.; Vulpetti, A.; Cristiani, C.; Valsasina, B.; Knapp, S.; Kalisz, H.; Flocco, M., Structural Characterization of the Gsk-3β Active Site Using Selective and Non-Selective AtpMimetic Inhibitors. Journal of molecular biology 2003, 333, 393-407. https://doi.org/10.1016/j.jmb.2003.08.031
- Webb, B.; Sali, A., Comparative Protein Structure Modeling Using Modeller. Current protocols in bioinformatics 2016, 54, 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3
- Huey, R.; Morris, G. M., Using Autodock 4 with Autodocktools: A Tutorial. The Scripps Research Institute, USA 2008, 54-56.
- Keretsu, S.; Bhujbal, S. P.; Cho, S. J., Docking and 3d-Qsar Studies of Hydrazone and Triazole Derivatives for Selective Inhibition of Grk2 over Rock2. Letters in Drug Design & Discovery 2020, 17, 618-632. https://doi.org/10.2174/1570180816666190618105320
- Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. Journal of computational chemistry 1998, 19, 1639-1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
- Lindahl, E.; Abraham, M.; Hess, B.; van der Spoel, D., Gromacs 2020 Manual. Version: 2020.
- Huang, J.; MacKerell Jr, A. D., Charmm36 All‐Atom Additive Protein Force Field: Validation Based on Comparison to Nmr Data. Journal of computational chemistry 2013, 34, 2135-2145. https://doi.org/10.1002/jcc.23354
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I., Charmm General Force Field: A Force Field for Drug‐Like Molecules Compatible with the Charmm All‐Atom Additive Biological Force Fields. Journal of computational chemistry 2010, 31, 671-690. https://doi.org/10.1002/jcc.21367
- Kumari, R.; Kumar, R.; Consortium, O. S. D. D.; Lynn, A., G_Mmpbsa a Gromacs Tool for High-Throughput Mm-Pbsa Calculations. Journal of chemical information and modeling 2014, 54, 1951-1962. https://doi.org/10.1021/ci500020m
- Keretsu, S.; Bhujbal, S. P.; Cho, S. J., Computational Study of Paroxetine-Like Inhibitors Reveals New Molecular Insight to Inhibit Grk2 with Selectivity over Rock1. Scientific reports 2019, 9, 1-14. https://doi.org/10.1038/s41598-018-37186-2
- Clark, M.; Cramer III, R. D.; Van Opdenbosch, N., Validation of the General Purpose Tripos 5.2 Force Field. Journal of Computational Chemistry 1989, 10, 982-1012. https://doi.org/10.1002/jcc.540100804
- Gadhe, C. G.; Kothandan, G.; Cho, S. J., Large Variation in Electrostatic Contours Upon Addition of Steric Parameters and the Effect of Charge Calculation Schemes in Comfa on Mutagenicity of Mx Analogues. Molecular Simulation 2012, 38, 861-871. https://doi.org/10.1080/08927022.2012.659182
- Gadhe, C. G.; Madhavan, T.; Kothandan, G.; Cho, S. J., In Silico Quantitative Structure-Activity Relationship Studies on P-Gp Modulators of Tetrahydroisoquinoline-Ethyl-Phenylamine Series. BMC structural biology 2011, 11, 5. https://doi.org/10.1186/1472-6807-11-5
- San Juan, A. A.; Cho, S. J., 3d-Qsar Study of Microsomal Prostaglandin E 2 Synthase (Mpges-1) Inhibitors. Journal of Molecular Modeling 2007, 13, 601-610. https://doi.org/10.1007/s00894-007-0172-0
- Bang, S. J.; Cho, S. J., Comparative Molecular Field Analysis (Comfa) and Comparative Molecular Similarity Index Analysis (Comsia) Study of Mutagen X. BULLETIN-KOREAN CHEMICAL SOCIETY 2004, 25, 1525-1530. https://doi.org/10.5012/bkcs.2004.25.10.1525
- Pasha, F.; Cho, S. J.; Beg, Y.; Tripathi, Y., Quantum Chemical Qsar Study of Flavones and Their Radical-Scavenging Activity. Medicinal Chemistry Research 2007, 16, 408-417. https://doi.org/10.1007/s00044-007-9060-5
- Gobbo, D.; Piretti, V.; Di Martino, R. M. C.; Tripathi, S. K.; Giabbai, B.; Storici, P.; Demitri, N.; Girotto, S.; Decherchi, S.; Cavalli, A., Investigating Drug-Target Residence Time in Kinases through Enhanced Sampling Simulations. Journal of Chemical Theory and Computation 2019, 15, 4646-4659. https://doi.org/10.1021/acs.jctc.9b00104
피인용 문헌
- Molecular Modeling Studies of N-phenylpyrimidine-4-amine Derivatives for Inhibiting FMS-like Tyrosine Kinase-3 vol.22, pp.22, 2021, https://doi.org/10.3390/ijms222212511