DOI QR코드

DOI QR Code

A Study on Flame Retardant Treatment on Bamboo Nonwoven Fabric and Manufacturing of Sandwich Structure Composites

대나무 섬유의 난연화 및 샌드위치 구조 복합재료 제조연구

  • Lee, Dong-Woo (The Research Inst. of Mechatronics, Changwon National University) ;
  • Prabhakar, M.N. (The Research Inst. of Mechatronics, Changwon National University) ;
  • Song, Jung-Il (Dept. of Mechanical Engineering, Changwon National University)
  • Received : 2020.11.14
  • Accepted : 2020.12.21
  • Published : 2020.12.31

Abstract

The present engineering sector focused on the sandwich composites and almost covered all engineering fields because of decent mechanical properties with a lightweight structure. It mainly consists of high strength fiber skin and porous structure core like corrugated, honeycomb, balsa wood, and foams which is playing a pivotal role in weight reduction. Recently researchers attention grabbed by Natural fiber sandwich composites due to biodegradability, renewable, low-cost, and environmentally friendly. However special focus is highly needed towards the flammability behavior of natural fibers used as reinforcement for composites. Herein, for the first time, the flame retardant natural fiber sandwich composite was fabricated by using flame retardant treated bamboo fabric and vinyl ester via the VARTM process. The impact of flame retardant treated bamboo fabric on mechanical and flame retardant properties were studied. The results concluded that the fabricated bamboo sandwich composites show structurally lightweight with significant mechanical strength and feasibility with respect to the flame.

샌드위치 구조는 우수한 강도와 경량성을 동시에 만족하는 구조물로써 다양한 분야에서 널리 사용되고 있다. 스킨은 주로 고강도의 섬유가, 코어는 경량화에 유리한 허니콤 구조 및 발사(balsa) 나무가 주로 사용되고 있으나, 내부의 공기층 및 난연처리의 어려움으로 인하여 화재에 취약하는 것이 단점이다. 본 연구에서는 대나무 섬유의 난연처리 연구를 통하여 친환경적인 소재를 이용한 난연처리 조건을 제시하였다. 또한 대나무 섬유를 이용하여 천연섬유 샌드위치 복합재료를 제조하고 기계적 특성평가를 수행하였다. 난연성이 향상된 천연섬유를 이용하여 샌드위치 구조의 복합재료를 제조한다면 새로운 유형의 복합재료가 될 수 있을 것으로 기대된다.

Keywords

References

  1. May-Pat, A., Valadez-Gonzalez, A., and Herrera-Franco, , P.J., "Effect of Fiber Surface Treatments on the Essential Work of Fracture of HDPE-continuous Henequen Fiber-reinforced Composites", Polymer Testing, Vol. 32, No. 6, 2013, pp. 1114-1122. https://doi.org/10.1016/j.polymertesting.2013.06.006
  2. Li, M., Pu, Y., Thomas, V.M., Yoo, C.G., Ozcan, S., Deng, Y., Nelson, K., and Ragauskas, A.J., "Recent Advancement of Plant-based Natural Fiber-reinforced Composites and Their Applications," Composites Part B, Vol. 200, 2020, pp. 108254. https://doi.org/10.1016/j.compositesb.2020.108254
  3. Khan, T., Sultan, M.T., and Ariffin, A.H., "The Challenges of Natural Fiber in Manufacturing, Material Selection, and Technology Application: A Review," Reinforced Plastic & Composites, Vol. 37, 2018, pp. 770-779. https://doi.org/10.1177/0731684418756762
  4. Li, Y., Mai, Y.-W., and Ye, L., "Sisal Fibre and Its Composites: a Review of Recent Developments," Composite Science Technology, Vol. 60, 2000, pp. 2037-2055. https://doi.org/10.1016/S0266-3538(00)00101-9
  5. Liu, K., Takagi, H., Osugi, R., and Yang, Z., "Effect of Lumen Size on the Effective Transverse Thermal Conductivity of Unidirectional Natural Fiber Composites" Composite Science Technology, Vol. 72, 2012, pp. 633-639. https://doi.org/10.1016/j.compscitech.2012.01.009
  6. Kwon, H.J., Sunthornvarabhas, J., Park, J.W., Lee, J.H., Kim, H.J., Piyachomkwan, K., Sriroth, K., and Cho, D., "Tensile Properties of Kenaf Fiber and Corn Husk Flour Reinforced Poly(lactic acid) Hybrid Bio-composites: Role of Aspect Ratio of Natural Fibers," Composites Part B, Vol. 56, 2014, pp. 232-237. https://doi.org/10.1016/j.compositesb.2013.08.003
  7. Joshia, S.V., Drzalb, L.T., Mohanty, A.K., and Arora, S., "Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites?," Composites Part A, Vol. 35, 2004, pp. 371-376. https://doi.org/10.1016/j.compositesa.2003.09.016
  8. Athijayamani, A., Thiruchitrambalam, M., Manikandan, V., and Pazhanivel, B., "Mechanical Properties of Natural Fibers Reinforced Polyester Hybrid Composite," International Journal of Plastics Technology, Vol. 14, 2010, pp. 104-116. https://doi.org/10.1007/s12588-009-0016-0
  9. Defoirdt, N., Biswas, S., De Vriese, L., Van Acker, J., Ahsan, Q., Gorbatikh, L., Van Vuure, A., and Verpoest, I., "Assessment of the Tensile Properties of Coir, Bamboo and Jute Fibre," Composites Part A, Vol. 41, No. 5, 2010, pp. 588-595. https://doi.org/10.1016/j.compositesa.2010.01.005
  10. Bongarde, U.S., Shinde, V.D., and Student, P.G., "Review on Natural Fiber Reinforcement Polymer Composites," International Journal of Engineering Science and Innovative Technology, Vol. 3, No. 2, 2014, pp. 431-436.
  11. Hachemane, B., Zitoune, R., and Bezzazi, B., "Sandwich Composites Impact and Indentation Behavior Study," Composites Part B, Vol. 51, 2013, pp. 1-10. https://doi.org/10.1016/j.compositesb.2013.02.014
  12. Reis, L., and Silva, A., "Mechanical Behavior of Sandwich Structures Using Natural Cork Agglomerates as Core Materials" Journal of Sandwich Structures & Materials, Vol. 11, No. 6, 2009, pp. 487-500. https://doi.org/10.1177/1099636209104523
  13. Zhang, Z.X., Zhang, J., Lu, B.-X., Xin, Z.X., Kang, C.K., and Kim, J.K., "Effect of Flame Retardants on Mechanical Properties, Flammability and Foamability of PP/Wood-Fiber Composites," Composites Part B, Vol. 43, No. 2, 2012, pp. 150-158. https://doi.org/10.1016/j.compositesb.2011.06.020
  14. Kandola, B.K., "Flame Retardant Characteristics of Natural Fibre Composites", In M. J. John, & S. Thomas (Eds.), pp.86-117, Natural Polymers, Volume 1: Composites.
  15. Chapple, S., and Anandjiwala, R., "Flammability of Natural Fiber-reinforced Composites and Strategies for Fire Retardancy: a Review," Journal of Thermoplastic Composite Materials, Vol. 23, 2010, pp. 871-893. https://doi.org/10.1177/0892705709356338
  16. "Standard Test Method for Measuring the Comparative Burning Characteristics of Solid Plastics in a Vertical Position", ASTM D3801, Vol. 8.
  17. Al-Oqla, F.M., and Sapuan, S.M., "Natural Fiber Reinforced Polymer Composites in Industrial Applications: Feasibility of Date Palm Fibers for Sustainable Automotive Industry," Journal of Cleaner Production, Vol. 66, 2014, pp. 347-354. https://doi.org/10.1016/j.jclepro.2013.10.050