DOI QR코드

DOI QR Code

Hydrophobicity and Adhesion of SiO2/Polyurethane Nanocomposites Topcoat for Aircraft De-icing with Different Pre-curing Time

선경화 시간에 따른 항공기 De-icing용 나노실리카/폴리우레탄 복합재료 탑코트의 소수성 및 접착특성 평가

  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology (RIGET), Gyeongsang National University) ;
  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology (RIGET), Gyeongsang National University) ;
  • Kwon, Dong-Jun (Research Institute for Green Energy Convergence Technology (RIGET), Gyeongsang National University) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology (RIGET), Gyeongsang National University)
  • Received : 2020.10.08
  • Accepted : 2020.12.06
  • Published : 2020.12.31

Abstract

The icing formation at aircraft occur problems such as increasing weight of the body, fuel efficiency reduction, drag reduction, the error of sensor, and etc. The viscosity of polyurethane (PU) topcoat was measured at 60℃ in real time to set the pre-curing time. SiO2 nanoparticles were dispersed in ethanol using ultra-sonication method. The SiO2/ethanol solution was sprayed on PU topcoat that was not cured fully with different pre-curing conditions. Surface roughness of SiO2/PU nanocomposites were measured using surface roughness tester and the surface roughness data was visualized using 3D mapping. The adhesion property between SiO2 and PU topcoat was evaluated using adhesion pull-off test. The static contact angle was measured using distilled water to evaluate the hydrophobicity. Finally, the pre-curing time of PU topcoat was optimized to exhibit the hydrophobicity of SiO2/PU topcoat.

항공기에서의 결빙은 동체 전체의 무게증가로 인한 연료 효율 감소, 거칠기 생성으로 인한 항력 증가, 센서의 오작동 등과 같은 문제의 원인이다. 폴리우레탄 탑코트의 경화온도인 60℃에서의 경화시간에 따른 폴리우레탄 탑코트의 점도를 실시간으로 측정하였고 이 데이터를 통해 폴리우레탄 탑코트의 시간 별 점도에 대해 파악하였다. 실리카 나노입자는 초음파분산을 통해 에탄올 내에 분산을 진행하였고, 각기 다른 선경화 조건을 진행한 폴리우레탄 탑코트 위에 도포를 진행하였다. 실리카/폴리우레탄 탑코트 나노복합재료의 표면 거칠기는 표면 거칠기 테스터를 사용하여 측정하였고 표면 거칠기 데이터는 3차원 매핑을 사용하여 시각화 하였다. 선경화 시간에 따른 실리카와 폴리우레탄 탑코트 간의 접착력은 인발접착시험(Adhesion pull-off test)를 통하여 평가를 진행하였고, 표면 소수성은 증류수를 이용한 정적 접촉각을 통해 평가하였다. 최종적으로 소수성 표면을 위한 폴리우레탄 탑코트의 최적 선경화 시간을 파악할 수 있었다.

Keywords

References

  1. Du, Y., Gui, Y., Xiao, C., and Yi, X., "Investigation on Heat Transfer Characteristics of Aircraft Icing Including Runback Water", International Journal of Heat and Mass Transfer, Vol. 53, No. 19-20, 2010, pp. 3702-3707. https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.021
  2. Su, Q., Chang, S., Song, M., Zhao, Y., and Dang, C., "An Experimental Study on the Heat Transfer Performance of a Loop Heat Pipe System with Ethanol-water Mixture as Working Fluid for Aircraft Anti-icing", International Journal of Heat and Mass Transfer, Vol. 139, 2019, pp. 280-292. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.015
  3. Raj, L.P., Lee, J.W., and Myong, R.S., "Ice Accretion and Aerodynamic Effects on a Multi-element airfoil under SLD Icing Conditions", Aerospace Science and Technology, Vol. 85, 2019, pp. 320-333. https://doi.org/10.1016/j.ast.2018.12.017
  4. Cao, Y., Tan, W., and Wu, Z., "Aircraft Icing: An Ongoing Threat to Aviation Safety", Aerospace Science and Technology, Vol. 75, 2018, pp. 353-385. https://doi.org/10.1016/j.ast.2017.12.028
  5. Deng, H., Chang, S., and Song, M., "The Optimization of Simulated Icing Environment by Adjusting the Arrangement of Nozzles in an Atomization Equipment for the Anti-icing and Deicing of Aircrafts", International Journal of Heat and Mass Transfer, Vol. 155, 2020, 119720. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119720
  6. Hasan, Z., "Deicing of a Glass Fiber Reinforced Aluminum Laminate - Part 1: Experiments and Numerical Simulation", Thermal Science and Engineering Progress, Vol. 20, 2020, pp. 100737. https://doi.org/10.1016/j.tsep.2020.100737
  7. Idris, M.K., Qiu, J., Melenka, G.W., and Grau, G., "Printing Electronics Directly onto Carbon Fiber Composites: Unmanned Aerial Vehicle (UAV) Wings with Integrated Heater for De-icing", Engineering Research Express, Vol. 2, No. 2, 2020, pp. 025022. https://doi.org/10.1088/2631-8695/ab8e24
  8. Vertuccio, L., Santis, F.D., Pantani, R., Lafdi, K., and Guadagno, L., "Effective De-icing Skin Using Graphene-based Flexible Heater", Composites Part B, Vol. 162, 2019, pp. 600-610. https://doi.org/10.1016/j.compositesb.2019.01.045
  9. Cao, Y., Farha, F.I., Ge, D., Liu, X., Liu, W., Li, G., Zhang, T., and Xu, F., "Highly Effective E-heating Performance of Nickel Coated Carbon Fiber and Its Composites for De-icing Application", Composite Structures, Vol. 229, 2019, pp. 111397. https://doi.org/10.1016/j.compstruct.2019.111397
  10. Wang, Y., Xu, Y., and Su, F., "Damage Accumulation Model of Ice detach Behavior in Ultrasonic De-icing Technology", Renewable Energy, Vol. 153, 2020, pp. 1396-1405. https://doi.org/10.1016/j.renene.2020.02.069
  11. Wang, Z., "Recent Progress on Ultrasonic De-icing Technique Used for Wind Power Generation, High-voltage Transmission Line and Aircraft", Energy and Buildings, Vol. 140, 2017, pp. 42-49. https://doi.org/10.1016/j.enbuild.2017.01.072
  12. Ji, W.T., Lu, X.D., Chen, L., Zhang, Y.W., and Tao, W.Q., "Experimental Investigation on the Ice Melting Heat Transfer with a Steam Jet Impingement Method", International Communications in Heat and Mass Transfer, Vol. 118, 2020, pp. 104901. https://doi.org/10.1016/j.icheatmasstransfer.2020.104901
  13. Zhou, J.Z., Lai, S.W., Xu, X.P., Chen, Y.H., Chu, W.J., and Gao, Y.M., "R&D of Equipment for Deicing by Thermal Water-jet and Mechanical Deicing Method", Applied Mechanics and Materials, Vol. 268-270, 2012, pp. 1288-1293. https://doi.org/10.4028/www.scientific.net/AMM.268-270.1288
  14. Memon, H., Liu, J., De Focatis, D.S.A., Choi, K.S., and Hou, X., "Intrinsic Dependence of ice Adhesion Strength on Surface Roughness", Surface and Coatings Technology, Vol. 385, 2020, pp. 125382. https://doi.org/10.1016/j.surfcoat.2020.125382
  15. Lv, L., Liu, H., Zhang, W., Chen, J., and Liu, Z., "Facile UV-curable Fabrication of Robust, Anti-icing Superhydrophobic Coatings Based on Polyurethane", Materials Letters, Vol. 258, 2020, pp. 126653. https://doi.org/10.1016/j.matlet.2019.126653
  16. Villeneuve, E., Brassard, J.D., and Volat, C., "Effect of Various Surface Coatings on De-icing/anti-icing Fluids Aerodynamic and Endurance Time Performances", Aerospace, Vol. 6, No. 10, 2019, pp. 114. https://doi.org/10.3390/aerospace6100114
  17. Li Y., Hu T., Li B., Wei, J., and Zhang J., "Totally Waterborne and Highly Durable Superamphiphobic Coatings for Anti-Icing and Anticorrosion", Advanced Materials Interfaces, Vol. 6, No. 23, 2019, pp. 1901255. https://doi.org/10.1002/admi.201901255
  18. Qi, Y., Yang, Z., Huang, W., and Zhang, J., "Robust Superhydrophobic Surface for Anti-icing and Cooling Performance: Application of Fluorine-modified TiO2 and Fumed SiO2", Applied Surface Science, Vol. 538, 2021, pp. 148131. https://doi.org/10.1016/j.apsusc.2020.148131
  19. Xu, Q., Wang, L., Fu, F., and Liu, X., "Fabrication of Fluorinefree Superhydrophobic Cotton Fabric Using Fumed Silica and Diblock Copolymer via Mist Modification", Progress in Organic Coatings, Vol. 148, 2020, pp. 105884. https://doi.org/10.1016/j.porgcoat.2020.105884
  20. Qi, Y., Yang, Z., Chen, T., Xi, Y., and Zhang, J., "Fabrication of Superhydrophobic Surface with Desirable Anti-icing Performance Based on Micro/nano-structures and Organosilane Groups", Applied Surface Science, Vol. 501, 2020, pp. 144165. https://doi.org/10.1016/j.apsusc.2019.144165
  21. Kim, J.H., Kwon, D.J., Shin, P.S., Baek, Y.M., Park, H.S., DeVries, K.L., and Park, J.M., "Evaluation of Surface Roughness and Frost Retardancy of a Glass Fiber/unsaturated Polyester Composite", International Journal of Heat and Mass Transfer, Vol. 130, 2019, pp. 282-289. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.094