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Abstract 
 

This research aims to develop a deep learning-based method that automatically detects and 

segments the defects on railroad surfaces to reduce the cost of visual inspection of the railroad. 

We developed our segmentation model by modifying a fully convolutional network model [1], 

a well-known segmentation model used for machine learning, to detect and segment railroad 

surface defects. The data used in this research are images of the railroad surface with one or 

more defect regions. Railroad images were cropped to a suitable size, considering the long 

height and relatively narrow width of the images. They were also normalized based on the 

variance and mean of the data images. Using these images, the suggested model was trained 

to segment the defect regions. The proposed method showed promising results in the 

segmentation of defects. We consider that the proposed method can facilitate decision-making 

about railroad maintenance, and potentially be applied for other analyses. 
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1. Introduction 

Trains and subways are popular forms of public transportation. Therefore, unexpected 

accidents and delays are of serious concern for railways making good maintenance essential. 

This study aims at the semantic segmentation of railroad surfaces through deep learning, 

permitting visualization of the size and position of defects. Defects occur owing to a variety 

of reasons, such as friction or the collision of parts connecting adjacent tracks, but generally 

increase over time [2]. Defect growth directly or indirectly causes risk factors, such as broken 

rails [18]. Therefore, prevention actions such as replacement or repair of the railroad track may 

be needed after a railroad inspection. Automated defect segmentation can help investigators 

find rail defects. Our main idea is illustrated in Fig. 1. 

 

 
Fig. 1.  Blueprint of actions such as replacement or repair, assisted by defect detection using a deep 

learning model 

 

To aid in the inspection process, we designed a segmentation model by modifying a fully 

convolutional network (FCN) [1]. Our model adapts to the size of the input image of the 

railroad surface, reducing the computation cost. The proposed segmentation model was 

developed to balance performance and computation time. Our segmentation model is a scaled 

down version of an FCN based on VGG19 [12]. Because it is based on VGG19, we were able 

to use parameters that had learned ImageNet in advance. As a result, our segmentation model 

with 27 relatively low-depth layers was able to achieve F1 and intersection over union (IoU) 

scores as high as 90% with low computation time.  

After a discussion of related work in Section 1.1, in Section 2, we describe the data, our 

network structure, and the proposed method. Section 3 presents the experiments we performed. 

In Section 4, we compare and analyze our experiments with related studies. In Section 5, we 

discuss the experiments conducted and conclude in Section 6. 

1.1 Related work 

As the need for automation of railroad inspection has increased, relevant studies have been 

conducted to support the automatic analysis of railroad surfaces using machine vision. 

Concerning railroad defect detection, a lot of researches into machine vision has already 

been done [20-22]. In particular, He et al. [14] introduced the Perona–Malik diffusion model 

for a rail surface defect detection system. And Gan et al. [9] proposed a hierarchical inspection 

framework including coarse extractors and fine extractors to handle different railway elements. 
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And in the classification problem using neural networks, Giben et al. [3] proposed a deep 

convolution neural network for material classification and segmentation of rails. And  Faghih-

Roohi et al. [4] proposed a deep convolutional neural network (DCNN) for classification. 

Moreover, Soukup and Huber-Mörk [15] reinforced detection performance by training the 

photometric stereo images of the surface defects to a convolutional neural network (CNN). 

Besides, Ref [5, 23] used YOLOv3 [6] or MobileNetV2 [24] to detect the presence of defects 

and to the approximate location of the defects called 'bounding boxes'. However, in this case, 

the size of the defect is not visually accurate. 

Fully convolutional network (FCN) [1] based methods have often been applied to the 

semantic segmentation of pixel-level classification of defects. To obtain better performance, 

researchers sometimes added a conditional random field to the FCN [16], or reconstructed a 

segmentation model such as SegNet [8] or U-net [17] inspired by the structure of the FCN. 

However, these models may be slower than the FCN-based method, because SegNet and U-

Net contain more complex pairwise decoder architectures.  

Among the segmentation methods, Liang et al. [7] has the closest relevance to our method. 

They made a SegNet with 59 layers to classify rail defects. In particular, Ref [7], used the same 

database as our research for the same purpose. Unfortunately, they did not provide a precise 

description of their segmentation experiment environment (e.g., GPU, parameters) or their 

image preprocessing method. Thus, we could not find a quantitive analysis of the method, 

making it difficult to directly compare performance. In this research, we provide a precise 

experimental description and quantitative evaluation results of the proposed method, along 

with an indirect comparison with Ref [7]. To the best of our knowledge, this research is the 

first to provide an exact experiment description and quantitative evaluation of a deep learning-

based method for railroad defect detection and segmentation. 

2. Methods 

2.1 Model Architecture 

2.1.1 Image Database Construction 

The dataset used in this research is composed of rail-surface images with at least one defect 

[9]. The defect region is approximately 1% of the entire image. In the dataset, for each original 

surface image, the corresponding mask image is provided with some noise. The mask image 

is considered to be the ground truth. There are two types of railroad images in this study. Type 

1 images are images of express rails; Type 2 images are of common or heavy haul rails. 

2.1.2 Data Initialization 

In order to make the railroad images suitable for use, each image was divided and cropped to 

obtain images of height 100 pixels, as illustrated in Fig. 2. From the express rail images (Type 

1), we obtained 709 samples of size 100×160×1, and from the common/heavy rail images 

(Type 2), we obtained 1408 samples of size 100×55×1.  
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Fig. 2.  Each image was divided and cropped to obtain images of height 100 pixels 

 

In the ground truth images, noise was eliminated by simple thresholding (value 127). The 

ground truth images underwent the same process as the railroad images. After that, the 

dataset images were split into two mutually exclusive groups. 90% of the images went into 

the training set, and 10% into the test set.  

2.1.3 Image Preprocessing 

For preprocessing, we subtracted the mean value of the training set images from every image 

(training and test sets) and then divided the pixel values of each image by the standard 

deviation of the training set images. Thus, the distribution of the pixel values changed, as 

illustrated in Fig. 3. 

 

 
Fig. 3.  Distribution of pixel values of the image before preprocessing (left) and the image after 

preprocessing (right) 

 

As mentioned, the test set images were preprocessed in the same way, using the mean 

value and the standard deviation of training set images. 

2.1.4 Fully Convolutional Network 

Fully convolutional networks (FCN) [1] show excellent performance for segmentation and 

have been applied in various studies. Largely, the traditional FCN consists of: 

1) Convolutionalization: In the supervised learning classifier, a convolutional neural 

network (CNN) maps the existing labels with output to a dense layer (one that is fully 

connected) at the end of the network. However, at the end of the network, FCN uses a 

convolution layer instead of a dense layer to output feature images. This is called 

convolutionization. 

2) Transpose Convolution: In a typical CNN structure, the pooling layer subsamples the 

input features. Max pooling is often used for the pooling method. It takes the maximum value 

at each of the sub-regions of a certain size and reduces the size of input features. Then, the 

transpose convolution layer (sometimes called a deconvolution layer [10]) is used to upscale 

the reduced output features. This enables back-propagation. 
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3) Addition Layer: As the subsampling and upscaling steps done by the pooling and 

transpose convolution layer may exclude useful information, FCN models add a feature map 

of the prior pooling layer to the output to increase model reliability. Combining fine and coarse 

layers has been shown to contribute to performance improvements. 

4) Dropout Layer: In deep learning, the dropout layer is a regularization layer [19]. The 

dropout layer randomly sets input units to 0 at a certain frequency rate, which helps prevent 

overfitting. 

2.1.5 Modified FCN Based on VGG 

AlexNet [11] or VGG [12] are often used as part of FCN architecture. In this research, we 

applied VGG and pre-training weights trained on ImageNet, and modified them for our 

purpose. Considering the difference between the Type 1 and Type 2 datasets employed here, 

we designed two FCN models for each data type. The details of both models are presented in 

Table 1 and Fig. 4. 

 
Table 1. Proposed FCN structure 

Sequence of Layer Type 1 Type 2 

Convolution layer 

Convolution layer 

Max-Pooling layer 

3× 3× 64 

3× 3× 64 

2× 2, Output: I/2 

3× 3× 64 

3× 3× 64 

2× 2, Output: I/2 

Convolution layer 

Convolution layer 

Max-Pooling layer 

3× 3× 128 

3× 3× 128 

2× 2, Output: I/4 

3× 3× 128 

3× 3× 128 

2× 2, Output: I/4 

Convolution layer 

Convolution layer 

Convolution layer 

Convolution layer 

Max-Pooling layer 

3× 3× 256 

3× 3× 256 

3× 3× 256 

3× 3× 256 

2× 2, Output: I/8 

3× 3× 256 

3× 3× 256 

3× 3× 256 

3× 3× 256 

2× 2, Output: I/8 

Convolution layer 

Convolution layer 

Convolution layer 

Convolution layer 

Max-Pooling layer 

3× 3× 512 

3× 3× 512 

3× 3× 512 

3× 3× 512 

2× 2, Output: I/16 

3× 3× 512 

3× 3× 512 

3× 3× 512 

3× 3× 512 

2× 2, Output: I/16 

Convolution layer 

Dropout layer 

Convolution layer 

Dropout layer 

Convolution layer 

1× 1× 1024 

Rate: 0.5 

1× 1× 1024 

Rate: 0.5 

1× 1× 2 

1× 1× 1024 

Rate: 0.5 

1× 1× 1024 

Rate: 0.5 

1× 1× 2 

Transpose-Convolution layer 

Addition layer 
4× 4× 2, Output: I/8 

With a 3rd pooling 

4× 4× 2, Output: I/8 

With a 3rd pooling 

Transpose-Convolution layer 

Addition layer 
3× 2× 2, Output: I/4 

With a 2nd pooling 

3× 3× 2, Output: I/4 

With a 2nd pooling 

Transpose-Convolution layer 4× 4× 2, Output: I/2 2× 3× 2, Output: I/2 

Transpose-Convolution layer 4× 4× 2, Output: I  2× 3× 2, Output: I 

 Total number of parameters 12,163,110 12,163,042 
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Fig. 4.  Model architecture. Both modified models have reduced number of parameters 

2.2 Training Methods 

We used the Adam optimizer [13] because it is known to have stochastic characteristics and 

maintain a prior value with stability and fast convergence speed. Mean softmax-cross entropy 

(MSCE) was employed for the cost function. When the image data size is assumed to be 

N× W× H and the number of classes is C, and the output of class i, the ith class of N× W× H 

size, is assumed to be Yi, we can define softmax as follows: 

 
(1) 

where C is the number of classes and Yi is the output of class i. We can also define MSCE as 

follows: 

 
(2) 

 

where N×W×H is the size of the input image, Ti is the label of the ith output, and we have 2 

classes (C = 2). Equations (1) and (2) can be expressed as Equations (3) and (4) respectively: 

 (3) 

 
(4) 

because the same location values in class dimensions T0 and T1 are always either the 1 – or 0 

state or the 0 – and 1 state, the loss function for a positive Ti can be expressed as follows:  

  
(5) 

3. Implementation 

3.1 Accuracy 

We used intersection over union (IoU) and the F1 score for evaluation. IoU is defined as | Tg 

∩ Tp | / | Tg ∪ Tp |, where Tg is the set of “true” pixels, and Tp is the set of predicted pixels. IoU 

http://www.texrendr.com/?eqn= L(T_i, Y /mid T_i = Positive) =  /frac{1}{NWH}/sum^{NWH}(-log(/frac{e^{Y_i}}{e^{Y_0} + e^{Y_1}}))_{nwh} %0
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expresses the spatial similarity between the target label and the predicted result. The F1 score 

is defined as 2TP/(2TP + FP + FN), where FP is false positive, TP is true positive, FN is false 

negative, and TN is true negative. The general accuracy (which is the detection rate) is just 

(TP+TN)/(TP+FP+TN+FN). However, TN is not very meaningful in this research because the 

percentage of defects in this dataset is ~1%. Thus, TN is always high, even when the model 

does not predict defects well. Therefore, we treat F1 and IoU scores as more important than 

TN scores and calculate the F1 and IoU scores of the untrained test set for each epoch. 

3.2 Experiment 

We used a GeForce GTX 1080(8Gb). We performed experiments to analyze the performance 

and calculate the time cost. The batch size was set to 16 and the learning rate was set at 10–4.  

In this experiment, Table 2 and Fig. 5, and Fig. 6 show that the calculated loss decreases 

over time. We stopped the training of the network at epoch 300 because its training loss 

approached 0.001. We used this model for the test set.  

 
Table 2. Training experiment 

Model Epoch Iteration Time 
Training 

Set Loss 

Type 1 

1 40 4.5 s 0.77 

10 400 46 s 0.28 

100 4000 470 s 0.002 

300 12000 1400 s 0.001 

Type 2 

1 80 5 s 0.79 

10 800 50 s 0.16 

100 8000 500 s 0.003 

300 24000 1500 s 0.001 

 

 
Fig. 5.  Model, training accuracy and loss at each epoch for Type 1. At epoch 300, training loss 

approached 0.001 



4770                                Kim et al.: Railroad-surface Defect Segmentation using modified Fully Convolutional Network 

 
Fig. 6.  Model, training accuracy, and loss for Type 2. At epoch 300, training loss approached 0.001 

4. Analysis and Results 

4.1 Experimental Results 

The test results of the proposed network were obtained at epoch 300, batch size 16, and 

learning rate 0.0001. Table 3 and Fig. 7 show test results very close to the ground truth images.  

 
Table 3. Test set score for trained model with learning rate 0.0001, batch size 16, and epoch 300. 

Type 1 and 2 test sets consisted of 71 and 141 images, respectively 

Model Accuracy F1 score Precision Recall Mean IoU 
Entire 

Time 

Type 1 0.999 0.972 0.972 0.973 0.947 9 s 

Type 2 0.999 0.946 0.932 0.961 0.898 9 s 

 

Compared with Type 1, Type 2 images of common and heavy rails have a more consistent 

background but more complex defects with more diverse appearances. The authors of Ref [9] 

reported performance differences due to this; it also occurred in our research. 

 

 
Fig. 7.  Result images of Type 1 and Type 2 test sets 
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4.2 Comparisons and Validation  

We compared the previous segmentation model [7] with the proposed model for validation. In 

addition, we also implemented the FCN-8s model [1] and compared it with the proposed model. 

FCN-8s is based on the VGG16 architecture. The previous segmentation model consists of 59 

layers based on SegNet [8], as discussed in Ref [7]. However, our implementation may not 

match the original architecture of Ref [7]. Their model used 120 samples of size 1250×55×1 

for training and nine samples for testing. Unfortunately, the authors of the segmentation model 

[7] did not report how to choose the test images from the dataset. Therefore, we randomly 

selected 120 samples for training and nine samples for testing. The experimental results of our 

implementation of Ref [7] are shown in Table 4.  
 

Table 4. Segmentation model [7] training result 

Epochs Iteration 
Time 

(per step) 

Training 

Acc 

Training 

Loss 

100 3200 700 s (60 ms) 0.997 0.036 

300 9600 2100 s (60 ms) 0.999 0.002 

 

We also localized our dataset structure for the segmentation model [7] for a fair comparison. 

For this, we use k-fold cross-validation, which is often used for model evaluation. We used 

fivefold cross-validation for objective evaluation. Table 5 and 6 show the F1 score IoU results 

of five subsets of three models (Base SegNet [7], FCN-8s [1], and our model, Proposed FCN). 

Table 7 and Fig. 8  show the overall comparison results of the three models. 

 
Table 5. Fivefold cross-validation result of F1 score 

Type Model 
F1 score 

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 

Type 1 

Proposed FCN 0.899 0.954 0.932 0.874 0.942 

Base SegNet [7] 0.892 0.897 0.926 0.902 0.851 

FCN-8s         [1] 0.913 0.882 0.872 0.861 0.892 

Type 2 

Proposed FCN 0.874 0.929 0.911 0.906 0.956 

Base SegNet[7] 0.912 0.888 0.912 0.840 0.854 

FCN-8s        [1] 0.847 0.902 0.932 0.896 0.921 

 
Table 6. Fivefold cross-validation result of mean IoU 

Type Model 
Mean IoU 

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 

Type 1 

Proposed FCN 0.817 0.912 0.872 0.777 0.891 

Base SegNet[7] 0.805 0.814 0.862 0.822 0.741 

FCN-8s        [1] 0.839 0.789 0.773 0.755 0.815 

Type 2 

Proposed FCN 0.777 0.896 0.847 0.829 0.917 

Base SegNet [7] 0.838 0.799 0.838 0.724 0.745 

FCN-8s         [1] 0.736 0.822 0.873 0.811 0.853 
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Table 7. Fivefold cross-validation average comparisons 

Type Model 
Mean Time  

Per step 

Mean 

Validation Loss 

Mean 

Validation Acc 

Mean 

F1 score 

Mean 

IoU 

Type 1 

Proposed FCN 7 ms 0.003 0.999 0.920 0.854 

Base SegNet    [7] 13 ms 0.007 0.998 0.893 0.809 

FCN-8s            [1] 8 ms 0.004 0.998 0.884 0.792 

Type 2 

Proposed FCN 4 ms 0.009 0.998 0.916 0.846 

Base SegNet  [7] 6 ms 0.017 0.997 0.881 0.789 

FCN-8s          [1] 5 ms 0.010 0.998 0.900 0.819 

 

 
(a) Type 1  

 
(b) Type 2  

Fig. 8.  Comparison plots 

5. Discussion 

Defect segmentation should be fast and accurate. We have suggested a relatively simple 

network and algorithm with promising results. It is observed that the proposed method can be 

applied to effective railroad defect detection. In our experiment, small batch size or low 

learning rate cases showed a tendency to converge faster in loss value than large batch size or 

high learning rate cases, with a widespread zigzag shape. Although we could not determine 

the exact reason for the widespread zigzag shape of the loss, it seems that batch size and 

learning rate should be considered as the tradeoff between time cost and performance in this 

research. Considering all the results with parameter variations in this research, we assigned a 

batch size of 16 and a learning rate of 10–4 as appropriate values. 

Regarding the difference between data types 1 and 2, the difference in shape between these 

two data sets seems to cause a performance difference. This indicates that although we tried 

to normalize the railroad image data, there are still features that cause the difference in 

performance. To compensate for the difference in the shape and size of the railroad image data, 

we have to find an improved method than simple image resizing and normalization using the 

standard deviation and average. We are investigating such a method as the next step of this 

research. 

Because we used the same dataset as Ref [7] and have the same purpose, we compared the 

results of Ref [7] with ours. To do this, we implemented their method according to Ref [7]. 

Unfortunately, the authors of Ref [7] did not report how to reproduce their method and evaluate 

their performance precisely. Although we tried to reproduce their method, we are not sure that 

we reproduced their method accurately. Despite this, we compared our results to previous 

methods in terms of F1 and IoU. Applying our dataset to train our implementation of Ref [7] 

as well as the proposed method, we showed that the performance of the proposed method is 
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better than or equal to the previous method. To the best of our knowledge, this research is the 

first to provide the exact experimental description and quantitative evaluation of a deep 

learning-based method for railroad defect detection and segmentation, which is the main 

contribution of this research. Our future work will be to apply this method to real railroad 

situations, and measure the time-dependent growth of railroad defects. 

6. Conclusion 

The purpose of this study was to achieve rapid and accurate defect segmentation. We suggested 

a relatively fast-learning deep neural network model to optimize the balance between 

performance and calculation time cost, by building a neural network based on FCN. Because 

of its relatively simple and effective structure, our model’s calculation cost was low, 

considering its promising performance. The IoU and F1 scores exceeded 90%. We hope that 

this research will be easily applied to industry, and we are planning to use this research in real 

railroad situations. 
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