DOI QR코드

DOI QR Code

Chemicals Constituents from Leaves of Diospyros iturensis (Gürke) Letouzey & F. White and their Biological Activities

  • 투고 : 2020.09.27
  • 심사 : 2020.11.17
  • 발행 : 2020.12.31

초록

The chemical investigation of the methanolic crude extract of leaves of Diospyros iturensis gave us 15 known secondary metabolites identified as mixture of α-amyrenone (1) and β-amyrenone (2), β-amyrin (3), mixture of β-sitosterol (4) and stigmasterol (5), betulin (6), uvaol (7), betulinic acid (8), ursolic acid (9), corosolic acid (10), actinidic acid (11),11-O-p-hydroxybenzoylbergenin (12), bergenin (13) and mixture of stigmasterol glucoside (14) and β-sitosterol glucoside (15) respectively. The structures of secondary metabolites were elucidated with the help of NMR and mass spectral data and by comparison of their spectral data with literature. Among the fifteen isolated compounds, four compounds were identified for the first time in Diospyros genus. These included uvaol (7), corosolic acid (10), actinidic acid (11) and 11-O-p-hydroxybenzoylbergenin (12). Crude methanolic extract of leaves and four isolated compounds including betulin (6), betulinic acid (8), 11-O-p-hydroxybenzoylbergenin (12) and bergenin (13) were evaluated for their antiproliferative activity against two cancer cell lines CAL-27 and NCI-H460 by the MTT assay, antioxidant potential and inhibitory activity against the lipoxygenase and urease enzymes, respectively. The results indicated that the methanolic crude extract of leaves exhibited moderate antioxidant activity and was inactive against the two cancer cell lines. Betulin (6), 11-O-p-hydroxybenzoylbergenin (12) and bergenin (13) exhibited moderate antioxidant and lipoxygenase inhibition with IC50 = 65.8, 85.6, 82.5 μM and IC50 = 58.5, 95.2, 76.2 μM, respectively. Furthermore, 11-O-p-hydroxybenzoylbergenin (12) and bergenin (13) exhibited moderate urease inhibition activity with IC50 values of 45.6 μM and 49.8 μM, respectively.

키워드

참고문헌

  1. Wallnofer, B. Ann. Naturhist. Mus. Wien. 2001, 103B, 485-512.
  2. Feumo Feusso, H. M.; Akak, C. M.; Tala, M. F.; Azebaze, A. G. B.; Vardamides, J. C.; Laatsch, H. Biochem. Syst. Ecol. 2017, 74, 51-56. https://doi.org/10.1016/j.bse.2017.09.001
  3. Maridass, M. Ethnobotanical Leaflets 2008, 12, 231-244.
  4. Letouzey, R.; White, F. Flore du Cameroun: les Ebenacees et les Ericacees; Museum National d'Histoire Naturelle: Paris, 1970, pp 3-57.
  5. Burkill, H. The useful plants of West Tropical Africa. Vol. 2: Families EI; Royal Botanic Gardens: United Kingdom, 1994, p 636.
  6. Quintao, N. L. M.; Rocha, L. W.; Silva, G. F.; Reichert, S.; Claudino, V. D.; Lucinda-Silva, R. M.; Malheiros, A.; De Souza, M. M.; Cechinel Filho, V.; Belle Bresolin, T. M.; da Silva Machado, M.; Wagner, T. M.; Meyre-Silva C. Biomed. Res. Int. 2014, 2014, 1-11. https://doi.org/10.1155/2014/636839
  7. Ebajo Jr, V. D.; Shen, C. C.; Ragasa, C. Y. J. Appl. Pharm. Sci. 2015, 5, 33-39.
  8. Feumo Feusso, H. M.; Dongmo, J. D.; Akak, C. M.; Lateef, M.; Ahmed, A.; Azebaze, A. G. B.; Kamdem Waffo, A. F.; Shaiq Ali, M.; Vardamides, J. C. Trends Phytochem. Res. 2019, 3, 117-122.
  9. Akbar, A.; Shaiq Ali, M.; Zikr-Ur-Rehman, S.; Lateef, M.; Saify, Z. S. Int. J. Biol. Biotech. 2020, 17, 9-15.
  10. Liu, M.; Yang, S.; Jin, L.; Hu, D.; Wu, Z.; Yang, S. Molecules 2012, 17, 6156-6169. https://doi.org/10.3390/molecules17056156
  11. Collins, D. O.; Ruddock, P. L.; de Grasse, J. C.; Reynolds, W. F.; Reese, P. B. Phytochemistry 2002, 59, 479-488. https://doi.org/10.1016/S0031-9422(01)00486-1
  12. Liao, C. R.; Kuo, Y. H.; Ho, Y. L.; Wang, C. Y.; Yang, C. S.; Lin, C. W.; Chang, Y. S. Molecules 2014, 19, 9515-9534. https://doi.org/10.3390/molecules19079515
  13. Feumo Feusso, H. M.; Akak, M. C.; Feussi Tala, M.; Azebaze, A. G. B.; Tsabang, N.; Vardamides, J. C.; Laatsch, H. Z. Naturforsch. 2016, 71b, 935-940. https://doi.org/10.1515/znb-2016-0059
  14. Woo, K. W.; Han, J. Y.; Choi, S. U.; Kim, K. H.; Lee, K. R. Nat. Prod. Sci. 2014, 20, 71-75.
  15. Lahlou, E. H.; Hirai, N.; Kamo, T.; Tsuda, M.; Ohigashi, H. Biosci. Biotechnol. Biochem. 2001, 65, 480-483. https://doi.org/10.1271/bbb.65.480
  16. Kashima, Y.; Yamaki, H.; Suzuki, T.; Miyazawa, M. J. Enzyme Inhib. Med. Chem. 2013, 28, 1162-1170. https://doi.org/10.3109/14756366.2012.719503
  17. Zamarrud.; Ali, I.; Hussain, H.; Ahmad, V. U.; Qaiser, M.; Amyn, A.; Mohammad, F. V. Fitoterapia 2011, 82, 722-725. https://doi.org/10.1016/j.fitote.2011.03.002
  18. Subramanian, R.; Subramanian, P.; Raj, V. Beni-suef Univ. J. Basic Appl. Sci. 2015, 4, 256-261. https://doi.org/10.1016/j.bjbas.2015.06.002
  19. Hansen, M.; Nielsen, S. E.; Berg, K. J. Immunol. Methods 1989, 119, 203-210. https://doi.org/10.1016/0022-1759(89)90397-9
  20. Subhasree, B.; Baskar, R.; Laxmi Keerthana, R.; Lijina Susan, R.; Rajasekaran, P. Food Chem. 2009, 115, 1213-1220. https://doi.org/10.1016/j.foodchem.2009.01.029
  21. Gulcin, I.; Alici, H.; Cesur, M. Chem. Pharm. Bull. 2005, 53, 281- 285. https://doi.org/10.1248/cpb.53.281
  22. Tappel. A. L. Methods of enzymology Vol. 5; Academic Press: New York, 1962, pp 539-542.
  23. Mehta, N.; Olson, J. W.; Maier, R. J. J. Bacteriol. 2003, 185, 726-734. https://doi.org/10.1128/JB.185.3.726-734.2003
  24. Weatherburn, M. W. Anal. Chem. 1967, 39, 971-974. https://doi.org/10.1021/ac60252a045