DOI QR코드

DOI QR Code

Stereoselective Microbial Hydroxylation of Progestin, Norethisterone by Using Aspergillus niger and Penicillium citrinum

  • Azizuddin, Azizuddin (Department of Chemistry, Federal Urdu University of Arts, Science & Technology) ;
  • Iqbal, Muhammad (Department of Chemistry, Federal Urdu University of Arts, Science & Technology) ;
  • Musharraf, Syed Ghulam (H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi) ;
  • Shahzad, Saleem (Department of Agriculture & Agribusiness Management, University of Karachi)
  • Received : 2020.07.30
  • Accepted : 2020.09.28
  • Published : 2020.12.31

Abstract

Microbial transformation of a potent progestin, norethisterone (17��-hydroxy-19-nor-17α-pregn-4-en-20-yn-3-one) (1) was carried out by using two filamentous fungi Aspergillus niger and Penicillium citrinum. Biotransformation of 1 with A. niger yielded a hydroxylated transformed product 10��,17��-diydroxy-19-nor-17α-pregn-4-en-20-yn-3-one (2) whereas 11��,17��-diydroxy-19-nor-17α-pregn-4-en-20-yn-3-one (3) was obtained through microbial transformation of 1 by P. citrinum. It is the first report of their production from 1 by using A. niger and P. citrinum with complete 1H- and 13C-NMR assignment. The structures of both metabolites were characterized by various spectroscopic techniques and reported data.

Keywords

References

  1. Donova, M. V.; Egorova,O. V. Appl. Microbiol. Biotechnol. 2012, 94, 1423-1447. https://doi.org/10.1007/s00253-012-4078-0
  2. Bernhardt, R. J. Biotechnol. 2006, 124, 128-145. https://doi.org/10.1016/j.jbiotec.2006.01.026
  3. Sultana, N. Steroids 2018, 136, 76-92. https://doi.org/10.1016/j.steroids.2018.01.007
  4. Erkkola, R.; Landgren, B. Acta Obstet. Gynecol. Scand. 2005, 84, 207-216. https://doi.org/10.1080/j.0001-6349.2005.00759.x
  5. Humpel, M. Contraception 1982, 26, 83-95. https://doi.org/10.1016/0010-7824(82)90175-5
  6. Schoonen, W. G. E. J.; Deckers, G. H.; de Gooijer, M. E.; de Ries, R.; Kloosterboer, H. J. J. Steroid Biochem. Mol. Biol. 2000, 74, 213-222. https://doi.org/10.1016/s0960-0760(00)00125-4
  7. Taniguchi, F.; Enatsu, Ai.; Ikebuchi, A.; Yamane, E.; Moriyama, M.; Murakami, J.; Harada, T.; Harada, T. Yonago Acta Med. 2017, 60, 182-185. https://doi.org/10.33160/yam.2017.09.008
  8. Zakelj-Mavric, M.; Belic, I.; Gottlieb, H. E. FEMS Microbiol. Lett. 1986, 33, 117-120. https://doi.org/10.1016/0378-1097(86)90197-7
  9. Ambrus, G.; Szarka, E.; Barta, I.; Albrecht, K.; Horvath, G. Acta Microbiol. Acad. Sci. Hung. 1975, 22, 453-461.
  10. Ambrus, G.; Szarka, E.; Barta, I.; Horvath, G.; Radics, L.; Kajtar, M. Steroids 1975, 25, 99-106. https://doi.org/10.1016/S0039-128X(75)80010-9
  11. Hu, S. H.; Tian, X. F.; Sun, Y. H.; Han, G. D. Steroids 1996, 61, 407-410. https://doi.org/10.1016/0039-128X(96)00047-5
  12. Zafar, S.; Bibi, M.; Yousuf, S.; Choudhary, M. I. Steroids 2013, 78, 418-425. https://doi.org/10.1016/j.steroids.2013.01.002
  13. Greenspan, G.; Rees, R. W. A.; Link, G. D.; Boyd, C. P.; Jones, R. C.; Alburn, H. E. Experientia 1974, 30, 328-329. https://doi.org/10.1007/BF01921644
  14. Alexander, L. S.; Goff, H. M. J. Chem. Edu. 1982, 59, 179-182. https://doi.org/10.1021/ed059p179