DOI QR코드

DOI QR Code

Searching for Rotationable Vegetables for Paratylenchus projectus in Lettuce Greenhouse

해바라기침선충(Paratylenchus projectus) 피해 경감을 위한 윤작작물 탐색

  • Kwon, Giyoon (Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Seo, Jongmin (Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Park, Sohee (Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Kang, Heonil (Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Park, Namsook (Nematode Research Center, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Choi, Insoo (Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University)
  • 권기윤 (부산대학교 생명자원과학대학 식물생명과학과) ;
  • 서종민 (부산대학교 생명자원과학대학 식물생명과학과) ;
  • 박소희 (부산대학교 생명자원과학대학 식물생명과학과) ;
  • 강헌일 (부산대학교 생명자원과학대학 식물생명과학과) ;
  • 박남숙 (부산대학교 생명산업융합연구원 선충연구센터) ;
  • 최인수 (부산대학교 생명자원과학대학 식물생명과학과)
  • Received : 2020.09.29
  • Accepted : 2020.12.14
  • Published : 2020.12.31

Abstract

The severe lettuce damage caused by Paratylenchus projectus was first reported in 2019 in Korea. To find high-value rotation crops for the control of P. projectus, nine vegetables, Brassica juncea (leaf mustard), B. rapa subsp. nipposinica (kyona), B. oleracea var. italica (broccoli), B. rapa subsp. chinensis (bok choy), B. oleracea var. viridis (kale), B. oleracea var. gongylodes (kohlrabi), Cichorium endivia (endive), C. intybus (chicory), Ipomoea aquatica (morning glory) were planted in d-10-cm clay pots in greenhouse. The growth of vegetables was compared between inoculated with 3,000 P. projectus per 100 ㎤ of soil and non-inoculated. Treatments were replicated 10 times. After 100 days, the reduction of fresh top weight was 30.4% in C. intybus, 35.1% in I. aquatica, 36.9% in B. oleracea var. acephala, 40.5% in C. endivia, 42.1% in B. rapa, 47.5% in B. rapa subsp. nipposinica, 50.4% in B. oleracea var. gonglodes, 56.3% in B. oleracea var. italica, and 66.0% in B. juncea. Nematode multiplication rates (Pf/Pi) were lower in I. aquatica (0.64) and C. endivia (1.1), but higher in B. oleracea var. gongylodes (2.54). Considering these results, I. aquatica is suitable for the rotation crop with lettuce until better rotation crops developed.

2019년 Paratylenchus projectus에 의한 심각한 상추 피해를 국내 처음으로 보고하였다. 상추 시설재배지에서 P. projectus 밀도를 낮출 수 있는 고소득 윤작작물을 탐색하고자 십자화과(Brassicaceae)에서 6종; 갓(leaf mustard, Brassica juncea), 경수채(kyona, B. rapa subsp. nipposinica), 브로콜리(broccoli, B. oleracea var. italica), 청경채(bok choy, B. rapa subsp. chinensis), 케일(kale, B. oleracea var. viridis), 콜라비(kohlrabi, B. oleracea var. gongylodes), 국화과(Asteraceae)의 2종; 엔다이브(endive, Cichorium endivia), 치커리(chicory, C. intybus), 매꽃과(Convolvulaceae)의 1종인 공심채(morning glory, Ipomoea aquatica) 등 총 9종을 윤작시험에 사용하였다. 각 엽채류를 직경 10 cm 토화분에 심고 침선충 접종(3,000 P. projectus/100 ㎤ soil) 및 비접종으로 나누고 각 처리별 10반복으로 하여 온실에서 재배하고, 100일 후 식물의 생육, 초장, 무게, 엽수, 뿌리무게, soil plant analysis development, 선충 밀도를 조사하였다. P. projectus를 접종한 모든 작물은 무처리에 비하여 생육이 감소하였다. 지상부 무게를 기준으로 하여, 브로콜리와 갓이 56-66%로 가장 감수율이 컸고 치커리와 공심채의 수량 감수가 30-35%로 비교적 감수율이 적었다. 또한 선충의 증식률(Pf/Pi 비율)도 콜라비의 2.54에 비하여 엔다이브는 1.1, 치커리는 1.35, 공심채는 0.64로 비교적 낮게 나타났다. 따라서 이번 실험에 의하면, 상추 재배지의 윤작작물로는, 비록 충분하지는 않지만 효과적인 윤작작물을 찾기 전까지는, 다른 엽채류에 비하여 수량 감수가 비교적 적고, 선충의 증식률이 가장 낮은 공심채가 상추재배지의 윤작작물 대안일 것으로 판단된다.

Keywords

References

  1. Braun, A. L. and Lownsbery, B. F. 1975. The pin nematode, Paratylenchus neoamblycephalus, on Myrobalan plum and other hosts. J. Nematol. 7: 336-343.
  2. Byeon, I.-S., Suh, S.-Y., Lee, Y.-S. and Chung, J.-B. 2014. Effect of double-cropping systems on nematode population in plastic film house soils of oriental melon cultivation. Korean J. Environ. Agric. 33: 17-23. (In Korean) https://doi.org/10.5338/KJEA.2014.33.1.17
  3. Castillo, P. and Vovlas, N. 2007. Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, Biology, Pathogenicity and Management. Brill, Leiden, The Netherlands. 529 pp.
  4. Choi, Y. E. 2001. Economic insects of Korea 20, Insecta Koreana Supplement 27. Nematoda (Tylenchida, Aphelenchida). National Institute of Agricultural Science & Technology, Suwon, Korea. 391 pp. (In Korean)
  5. Eck, J. A. 1972. The host-parasite relationship and control of Paratylenchus projectus on Iris germanica. M.S. thesis. Oklahoma State University, Stillwater, OK, USA. 55 pp.
  6. Fourie, H., Mc Donald, A. H. and Waele, D. D. 2010. Relationships between initial population densities of Meloidogyne incognita race 2 and nematode population development in terms of variable soybean resistance. J. Nematol. 42: 55-61.
  7. Kang, H., Eun, G., Ha, J., Lee, J., Kim, D., Kim, Y. et al. 2016. Screening of tissue papers for nematode extraction for the baermann funnel method. Korean J. Appl. Entomol. 55: 377-381. (In Korean) https://doi.org/10.5656/KSAE.2016.09.0.035
  8. Kim, D.-G., Choi, D.-R. and Lee, S. B. 2001. Effects of control methods on yields of oriental melon in fields infested with Meloidogyne arenaria. Res. Plant Dis. 7: 42-48. (In Korean)
  9. Korea Rural Economic Institute. 2017. URL https://www.krei.re.kr/krei/index.do [17 December 2020].
  10. Kwon, G., Kang, H., Seo, J., Yun, E., Park, N. and Choi, I. 2019. First report of corky roots of lettuce (Lactuca sativa) associated with Paratylenchus projectus. Res. Plant Dis. 25: 237-242. (In Korean) https://doi.org/10.5423/RPD.2019.25.4.237
  11. Long, J. H. and Todd, T. C. 2001. Effect of crop rotation and cultivar resistance on seed yield and the soybean cyst nematode in full-season and double-cropped soybean. Crop Sci. 41: 1137-1143. https://doi.org/10.2135/cropsci2001.4141137x
  12. Mackeen, M. M., Ali, A. M., Abdullah, M. A., Nasir, R. M., Mat, N, B., Razak, A. R. et al. 1997. Antinematodal activity of some Malaysian plant extracts against the pine wood nematode, Bursaphelenchus xylophilus. Pest. Manag. Sci. 51: 165-170. https://doi.org/10.1002/(SICI)1096-9063(199710)51:2<165::AID-PS623>3.0.CO;2-2
  13. McSorley, R. and Gallaher, R. N. 1993. Effect of crop rotation and tillage on nematode densities in tropical corn. J. Nematol. 25(4 Suppl): 814-819.
  14. McSorley, R., Parrado, J. L. and Dankers, W. H. 1984. A quantitative comparison of some methods for the extraction of nematodes from roots. Nematropica 14: 72-84.
  15. Nemaplex. 2020. THE «NEMATODE-PLANT EXPERT INFORMATION SYSTEM». A virtual encyclopedia on soil and plant nematodes. URL http://nemaplex.ucdavis.edu/ [17 December 2020].
  16. Pinochet, J. and Raski, D. J. 1977. New records of nematodes from Korea, including Paratylenchus pandus n.sp. (Paratylenchidae nematoda). J. Nematol. 9: 243-247.
  17. Rhoades, H. L. and Linford, M. B. 1959. Molting of preadult nematodes of the genus Paratylenchus stimulated by root diffusates. Science 130: 1476-1477. https://doi.org/10.1126/science.130.3387.1476
  18. Rhoades, H. L. and Linford, M. B. 1961. Biological studies on some members of the genus Paratylenchus. Proc. Helminthol. Soc. Wash. 28: 51-59.
  19. Rural Development Administration. 2012. Analysis and Research Standard of Agricultural Science Technology. 5th ed. Rural Development Administration, Suwon, Korea. 1135 pp. (In Korean)
  20. Tanimola, A. A., Asimeaa, A. O. and Ofuru-Joseph, S. 2013. Status of plant-parasitic nematodes on plantain (Musa parasidiaca (L.)) in Choba, Rivers State, Nigeria. World J. Agric. Sci. 9: 189-195.
  21. SAS Institute Inc. 2019. SAS/STAT Software for PC. Release 9.4. SAS Institute Inc., Cary, NC, USA.
  22. Wood, F. H. 1973. Biology and host range of Paratylenchus projectus Jenkins, 1956 (Nematoda: Criconematidae) from a sub-alpine tussock grassland. New Z. J. Agric. Res. 16: 381-384. https://doi.org/10.1080/00288233.1973.10421119