DOI QR코드

DOI QR Code

맥류 종자의 페룰산(ferulic acid) 함량과 붉은곰팡이 저항성

Ferulic Acid Content of Barley and Wheat Grains and Head Blight Resistance

  • 백슬기 (국립농업과학원 유해생물팀) ;
  • 김소수 (국립농업과학원 유해생물팀) ;
  • 장자영 (국립농업과학원 유해생물팀) ;
  • 김점순 (국립농업과학원 유해생물팀) ;
  • 이데레사 (국립농업과학원 유해생물팀)
  • Baek, Seul Gi (Microbial Safety Team, National Institute of Agricultural Sciences) ;
  • Kim, Sosoo (Microbial Safety Team, National Institute of Agricultural Sciences) ;
  • Jang, Ja Yeong (Microbial Safety Team, National Institute of Agricultural Sciences) ;
  • Kim, Jeomsoon (Microbial Safety Team, National Institute of Agricultural Sciences) ;
  • Lee, Theresa (Microbial Safety Team, National Institute of Agricultural Sciences)
  • 투고 : 2020.09.29
  • 심사 : 2020.11.11
  • 발행 : 2020.12.31

초록

페룰산 함량이 붉은곰팡이병과 곰팡이독소 저항성 곡류 육종의 선발지표가 될 수 있는지 알기 위해 밀, 보리, 벼 육성 품종 80점의 페룰산 함량을 조사하였다. 페룰산 함량은 보리 20품종이 1.66-2.77 mg/g, 밀 40품종이 0.56-1.53 mg/g이었으며 벼 20품종은 0.91-2.13 mg/g이었다. 이 중 페룰산 함량이 다른 밀과 보리 각 7품종을 선정하여 F. graminearum과 F. asiaticum 각 2균주의 붉은곰팡이병과 독소 생성량을 분석하였다. 밀 품종의 평균 병원성은 페룰산 함량이 높은 보리에 비해 유의하게 낮았고 밀 품종 간에는 상관관계가 없었다. 곰팡이독소도 병원성과 같이 페룰산 함량이 낮은 밀이 보리보다 생성량이 낮았다. 그러나 보리에서는 F. asiaticum 균주의 병원성과 독소 생성량이 페룰산 함량과 음의 상관관계를 나타내었다. 이 결과는 페룰산 함량이 밀과 보리에서 F. graminearum과 F. asiaticum에 의한 붉은곰팡이병과 독소 생성에 저항성 요인이 아님을 보여준다.

In order to find if a ferulic acid (FA) can be used as a selection index in cereal breeding for resistance to head blight and mycotoxin production, we analyzed FA in the grains of 80 cultivars of barley, rice, and wheat. FA content ranged 1.66-2.77 mg/g in barley (n=20), 0.56-1.53 mg/g in wheat (n=40), and 0.91-2.13 mg/g in rice (n=20). Among these, 7 cultivars each of barley and wheat with different FA content were tested for head blight and mycotoxin production by 2 Fusarium graminearum and 2 F. asiaticum strains. Mean pathogenicity of the wheat cultivars was significantly less than that of barley with higher FA and among wheat cultivars, there was no correlation between FA content and pathogenicity. Mycotoxin production was also lower in the wheat than in the barley as pathogenicity. However, pathogenicity and toxins produced by F. asiaticum were negatively correlated with FA content in barley. These results indicate that FA is not a resistance factor to head blight by F. asiaticum and F. graminearum or its mycotoxin production in barley and wheat.

키워드

참고문헌

  1. Assabgui, R. A., Reid, L. M., Hamilton, R. I. and Arnason, J. T. 1993. Correlation of kernel (E)-ferulic acid content of maize with resistance to Fusarium graminearum. Phytopathogy 83: 949-953. https://doi.org/10.1094/Phyto-83-949
  2. Bily, A. C., Reid, L. M., Taylor, J. H., Johnston, D., Malouin, C., Burt, A. J. et al. 2003. Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to Fusarium graminearum. Phytopathogy 93: 712-719. https://doi.org/10.1094/PHYTO.2003.93.6.712
  3. Boutigny, A. L., Barreau, C., Atanasova-Penichon, V., Verdal-Bonnin, M. N., Pinson-Gadais, L. and Richard-Forget, F. 2009. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol. Res. 113: 746-753. https://doi.org/10.1016/j.mycres.2009.02.010
  4. Boz, H. 2015. Ferulic acid in cereals-a review. Czech J. Food Sci. 33: 1-7. https://doi.org/10.17221/401/2014-CJFS
  5. Ferrochio, L., Cendoya, E., Farnochi, M. C., Massad, W. and Ramirez, M. L. 2013. Evaluation of ability of ferulic acid to control growth and fumonisin production of Fusarium verticillioides and Fusamrium proliferatum on maize based media. Int. J. Food Microbiol. 167: 215-220. https://doi.org/10.1016/j.ijfoodmicro.2013.09.005
  6. Jang, J. Y., Baek, S. G., Choi, J.-H., Kim, S., Kim, J., Kim, D.-W. et al. 2019. Characterization of nivalenol-producing Fusarium asiaticum that causes cereal head blight in Korea. Plant Pathol. J. 35: 543-552. https://doi.org/10.5423/PPJ.OA.06.2019.0168
  7. Jang, J. Y., Kim, S., Jin, H. S., Baek, S. G., O, S., Kim, K. et al. 2018. Occurrence of toxigenic Fusarium spp. and zearalenone in scabby rice grains and healthy ones. Res. Plant Dis. 24: 308-312. (In Korean) https://doi.org/10.5423/RPD.2018.24.4.308
  8. Pani, G., Scherm, B., Azara, E., Balmas, V., Jahanshiri, Z., Carta, P. et al. 2014. Natural and natural-like phenolic inhibitors of type B trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum. J. Agric. Food Chem. 62: 4969-4978. https://doi.org/10.1021/jf500647h
  9. Stuper-Szablewska, K., Kurasiak-Popowska, D., Nawracala, J. and Perkowski, J. 2016. Study of metabolite profiles in winter wheat cultivars induced by Fusarium infection. Cereal Res. Commun. 44: 572-584. https://doi.org/10.1556/0806.44.2016.034
  10. Tilay, A., Bule, M., Kishenkumar, J. and Annapure, U. 2008. Preparation of ferulic acid from agricultural wastes: its improved extraction and purification. J. Agric. Food Chem. 56: 7644-7648. https://doi.org/10.1021/jf801536t
  11. U. S. Wheat and Barley Scab Initiative. 2017. Fusarium Focus 17(1). URL https://scabusa.org/pdfs/fus-focus_newsletter_v1_2-2017.pdf [25 September 2020].