DOI QR코드

DOI QR Code

한국 내 Alternaria alternata에 의한 토마토 과실 검은곰팡이병

Black Mold on Tomato Fruits Caused by Alternaria alternata in Korea

  • 투고 : 2020.09.01
  • 심사 : 2020.11.10
  • 발행 : 2020.12.31

초록

2018년 7월에 한국의 수원에 있는 온실 재배 토마토의 과실에서 검은곰팡이병이 빈번하게 관찰되어 발생률을 조사한 결과, 일반토마토에서 5.0-25.0%(평균 12.3%), 방울토마토에서 2.0-7.0%(평균 3.7%)였다. 병든 과실의 병반에서 16개의 Alternaria균을 단포자 분리하여 형태적 특성을 조사하고, 이 중에서 8균주를 공시하여 염기서열 분석을 실시하였다. 분리 균주들에 대한 형태적 및 분자생물학적 특성을 조사한 결과, 모두 Alternaria alternata로 동정되었다. 4균주의 A. alternata를 공시하여 각각 3품종의 일반토마토와 방울토마토 과실에 대한 병원성 검정을 실시한 결과, 접종 균주 모두 온실에서 관찰된 것과 같은 검은곰팡이병 증상을 유발하였다. 또한 병원성 검정 결과, 공시 토마토 품종들의 과실은 접종 균주들에 대한 감수성에 있어서 차이가 있는 것으로 나타났다. 본 연구 결과, 한국 내 A. alternata에 의한 토마토 과실의 검은곰팡이병 발생을 처음으로 보고한다.

Black mold was frequently observed on tomatoes grown in a greenhouse in Suwon, Korea in July 2018. The incidence of the disease was 5.0-25.0% (average 12.3%) and 2.0-7.0% (average 3.7%) in the context of tomato and cherry tomato fruits, respectively. Sixteen single-spore isolates of Alternaria sp. were obtained from the diseased fruits and investigated for their morphological characteristics. Among the isolates, eight were used for sequencing analysis. All of the isolates were identified as Alternaria alternata based on their morphological and molecular characteristics. The pathogenicity of four isolates of A. alternata was investigated using three varieties each of tomato and cherry tomato via artificial inoculation. All of the isolates induced black mold symptoms on the inoculated tomato fruits. Notably, the symptoms were similar to those observed in the greenhouse. However, the pathogenicity tests revealed that different tomato varieties presented distinct patterns of susceptibility to the isolates. This is the first report of A. alternata causing black mold on tomato fruits in Korea.

키워드

참고문헌

  1. Jones JB, Zitter TA, Momol TM, Miller, SA. Compendium of Tomato Diseases and Pests. Second edition. The American Phytopathological Society, St. Paul, Minnesota, USA: APS Press; 2014.
  2. The Korean Society of Plant Pathology. List of plant diseases in Korea. Fifth edition. Suwon, Korea: The Korean Society of Plant Pathology; 2009.
  3. Ellis MB. Dematiaceous Hyphomycetes. Kew, Surray, England: Commonwealth Mycological Institute; 1971. p. 465-6.
  4. Simmons EG. Alternaria, An Identification Manual. Utrecht, the Netherlands: CBS Fungal Biodiversity Centre; 2007. p. 582-4.
  5. Rotem, J. The Genus Alternaria, Biology, Epidemiology, and Pathogenicity. The American Phytopathological Society, St. Paul, Minnesota, USA: APS Press; 1994.
  6. Choi HW, Kim JM, Hong SK, Kim WG, Chun SC, Yu SH. Mating types and optimum culture conditions for sexual state formation of Fusarium fujikuroi isolates. Mycobiology 2009;37:247-50. https://doi.org/10.4489/MYCO.2009.37.4.247
  7. Woudenberg JHC, Seidl MF, Groenewald JZ, de Vries M, Stielow JB, Thomma BPHJ, Crous PW. Alternaria section Alternaria: Species, formae speciales or pathotypes? Stud Mycol 2015;82:1-21. https://doi.org/10.1016/j.simyco.2015.07.001
  8. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A guide to methods and application. San Diego: Academic Press; 1990. p. 315-22.
  9. Berbee M, Pirseyedi M, Hubbard S. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 1999;91:964-77. https://doi.org/10.2307/3761627
  10. Hong SG, Cramer RA, Lawrence CB, Pryor BM. Alt a 1 allergen homologs from Alternaria and related taxa: analysis of phylogenetic content and secondary structure. Fungal Genet Biol 2005;42:119-29. https://doi.org/10.1016/j.fgb.2004.10.009
  11. Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 2007;44:1204-23. https://doi.org/10.1016/j.ympev.2007.03.011
  12. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 1999;16:1799-808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  13. Andrew M, Peever T, Pryor BM. An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia 2009;101:95-109. https://doi.org/10.3852/08-135
  14. Tamura K, Stecher G, Peteson D, Filipski A, Kumar S. MEGA6: Molocular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197
  15. Misaghi RG, Grogan RG, Duniway JM, Kimble KA. Influence of environment and culture media on spore morphology of Alternaria alternata. Phytopathology 1978;68:29-34. https://doi.org/10.1094/Phyto-68-29
  16. El Gobashy SF, Mikhail WZA, Ismail AM, Zekry A, Moretti A, Susca A, Soliman AS. Phylogenetic, toxigenic and virulence profiles of Alternaria species causing leaf blight of tomato in Egypt. Mycol Prog 2018;17:1269-82. https://doi.org/10.1007/s11557-018-1442-1
  17. Gilchrist DG, Grogan RG. Production and nature of a host-specific toxin from Alternaria alternata f. sp. lycopersici. Phytopathology 1976;66:165-71. https://doi.org/10.1094/Phyto-66-165
  18. Choi TJ, Chung HS, Lee YW. Occurrence of tomato stem canker in Korea and phytotoxin production by the pathogen. Korean J Plant Pathol 1989;5:32-9.