Acknowledgement
한국지질자원연구원 2020년 주요사업의 일환으로 수행되었으며, 제1저자는 과학기술정보통신부의 재원으로 수행되는 한국연구재단의 기초연구사업(2019R1F1A1058711)의 지원을 받았습니다. 지원에 감사드립니다.
References
- Alcolea, A. Kuhlmann, U. Marschall, P., et al., 2016. A pragmatic approach to abstract the excavation damaged zone around tunnels of a geological radioactive waste repository: application to the HG-A experiment in Mont Terri, Radioactive Waste Confinement: Clay in Natural and Engineered Barriers. Geological Society, London, Special Publications 443.
- Armand, G., Leveau, F., Nussbaum, C., Vaissiere, RL, Noiret, A, Jaeggi, D, Landrein, P, Righini, C. 2014. Geometry and properties of the excavation-induced fractures at the Meuse/Haute-Marne URL drifts. Rock Mech Rock Eng 47:21-41. https://doi.org/10.1007/s00603-012-0339-6
- Aoyagi, K., Ishii, E., Ishida, T. 2017. Field observation and failure analysis of an Excavation Damaged Zone in the Horonobe Underground Research Laboratory. J MMIJ 133:25-33. https://doi.org/10.2473/journalofmmij.133.25
- Aoyagi, K., & Ishii, E. 2018. A Method for Estimating the Highest Potential Hydraulic Conductivity in the Excavation Damaged Zone in Mudstone. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-018-1577-z.
- Autio, J., Gribi, P., Johnson, L., Marschall, P. 2006. Effect of excavation damaged zone on gas migration in a KBS-3H type repository at Olkiluoto, Physics and Chemistry of the Earth 31:649-653. https://doi.org/10.1016/j.pce.2006.04.016
- Bieniawski, ZT. 1967. Mechanism of brittle fracture of rock, parts I, II and III. Int J Rock Mech Min Sci 4:395-430. https://doi.org/10.1016/0148-9062(67)90030-7
- Birkholzer, J.T., Tsang, CF., Bond, AE., Hudson, JA., Jing, L., and Stephansson, O. 2019. 25 years of DECOVALEX - Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes, Int. J. Rock Mech. Min. Sci. 122, 103995. https://doi.org/10.1016/j.ijrmms.2019.03.015
- Bossart, P., Meier, PM, Moeri, A, Trick, T, Mayor, JC. 2002. Geological and hydraulic characterization of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory. Eng Geol 66:19-38. https://doi.org/10.1016/S0013-7952(01)00140-5
- Bossart, P., Trick, T, Meier, PM, Mayor, JC. 2004. Structural and hydrogeological characterization of the excavation-disturbed zone in the Opalinus Clay (Mont Terri Project, Switzerland). Appl Clay Sci 26:429-448. https://doi.org/10.1016/j.clay.2003.12.018
- Baechler, S., Lavanchy, JM, Armand, G, Cruchaudet, M. 2011. Characterisation of the hydraulic properties within the EDZ around drifts at level?490 m of the Meuse/Haute-Marne URL: a methodology for consistent interpretation of hydraulic tests. Phys Chem Earth 36:1922-1931. https://doi.org/10.1016/j.pce.2011.10.005
- Choi, S., Kihm, Y.H., Kim E., Cheon, D.S., 2020, Rock Mechanical Aspects in Site Characterization for HLW Geological Disposal: Current Status and Case Studies, TUNNEL & UNDERGROUND SPACE Vol.30, No.2, 2020, pp.136-148. https://doi.org/10.7474/TUS.2020.30.2.136
- Ishii, E., 2017. Estimation of the highest potential transmissivity of discrete shear fractures using the ductility index, International Journal of Rock Mechanics and Mining Sciences 100:10-22. https://doi.org/10.1016/j.ijrmms.2017.10.017
- Itasca Consulting Group Inc. 2009. FLAC3D Fast Lagrangian analysis of continua in 3 dimensions user's guide. Itasca Consulting Group Inc., Minneapolis
- JNC 2003. Horonobe Underground Research Laboratory project plans for surface-based investigations (Phase 1). JNX TN5510 2003-002.
- Kwon, S. Cho, W.J. 2008. The influence of an excavation damaged zone on the thermalmechanical and hydro-mechanical behaviors of an underground excavation. Engineering Geology 101(3-4), 110-123. https://doi.org/10.1016/j.enggeo.2008.04.004
- Kwon, S. Min, K.B., 2020. An Introduction to the DECOVALEX-2019 Task G: EDZ Evolution - Reliability, Feasibility, and Significance of Measurements of Conductivity and Transmissivity of the Rock Mass, TUNNEL & UNDERGROUND SPACE Vol.30, No.4, 2020, pp.306-319. https://doi.org/10.7474/TUS.2020.30.4.306
- Lajtai, EZ. 1974. Brittle fracture in compression. Int J Fract 10:525-536. https://doi.org/10.1007/BF00155255
- Lee, H.S., 2007. Analysis of Benchmark Test Model for Evaluation of Damage Characteristics of Rock Mass near Radioactive Waste Repository, Tunn. Undergr. Sp. 17(1), 32-42.
- Lisjak, A., Tatone, B. S. A., Mahabadi, O. K., Grasselli, G., Marschall, P., Lanyon, G. W., Nussbaum, C. 2015. Hybrid Finite-Discrete Element Simulation of the EDZ Formation and Mechanical Sealing Process Around a Microtunnel in Opalinus Clay. Rock Mechanics and Rock Engineering, 49(5), 1849-1873. doi:10.1007/s00603-015-0847-2
- Marschall, P., Trick, T. Lanyon, GW. Delay, J. Shao, H. 2008. Hydro-Mechanical evolution of damaged zones around a microtunnel in a claystone formation of the Swiss Jura mountains, The 42nd US Rock Mechanics Symposium (USRMS).
- Marschall, P., Giger, S., De La Vassiere, R., Shao, H., Leung, H., Nussbaum, C. Alcolea, A. 2017. Hydro-mechanical evolution of the EDZ as transport path for radionuclides and gas: insights from the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 110(1), 173-194. doi:10.1007/s00015-016-0246-z
- Martin, C.D. and G.W. Lanyon. 2003. Measurement of in-situ stress in weak rocks at Mont Terri Rock Laboratory, Switzerland. International Journal of Rock Mechanics and Mining Sciences 40(7-8), 1077-1088. https://doi.org/10.1016/S1365-1609(03)00113-8
- Nagra. 2016. Production, consumption and transport of gases in deep geological repositories according to the Swiss disposal concept. Nagra Technical Report, NTB 16-03, Nagra, Wettingen, Switzerland. http://www.nagra.ch.
- NUMO. 2011. Excavation Damaged Zones Assessment, NWMO DGR-TR-2011-21
- Park, S., Kwon, S., 2017. Status of researches of excavation damaged zone in foreign underground research laboratories constructed for developing high-level radioactive waster disposal techniques, Journal of Korean Society of Explosive & Blasting Engineering 35(3): pp.31-54.
- Perras, MA, Diederichs, MS. 2014. A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng 32:525-546. https://doi.org/10.1007/s10706-014-9732-0
- Phillips, T., Kampman, N., Bisdom, K., Forbes Inskip, N. D., den Hartog, S. A. M., Cnudde, V., & Busch, A. 2020. Controls on the intrinsic flow properties of mudrock fractures: A review of their importance in subsurface storage. Earth-Science Reviews, 103390. doi:10.1016/j.earscirev.2020.103390.
- Sato, T., Kikuchi, T., Sugihara, K. 2000. In-situ experiments on an excavation disturbed zone induced by mechanical excavation in neogene sedimentary rock at tono mine, central Japan. Eng Geol 56:97-108. https://doi.org/10.1016/S0013-7952(99)00136-2
- Shao, H., Schuster, K., Sonnke, J., Brauer, V. 2008. EDZ development in indurated clay formations? in situ borehole measurements and coupled HM modeling. Phys Chem Earth 33:5388-5395.
- Tsang, C.F., Bernier, F. Davies, C. 2005. Geohydromechanical processes in the Excavation Damaged Zone in crystalline rock, rock salt, and indurated and plastic clays - In the context of radioactive waste disposal, Int. J. Rock Mech. Min. Sci. 42(1), 109-125. https://doi.org/10.1016/j.ijrmms.2004.08.003
- Voltolini, M., Ajo-Franklin, J. B. 2020. The Sealing Mechanisms of a Fracture in Opalinus Clay as Revealed by in situ Synchrotron X-Ray Micro-Tomography. Frontiers in Earth Science, 8. doi:10.3389/feart.2020.00207
- Wileveau, Y., Cornet, FH. Desroches, J. Blumling, P. 2007. Complete in situ stress determination in an argillite sedimentary formation. Physics and Chemistry of the Earth 32(8-14), 866-878. https://doi.org/10.1016/j.pce.2006.03.018
- Yong, S. 2007. A three-dimensional analysis of excavation-induced perturbations in the Opalinus Clay at the Mont Terri Rock Laboratory. Ph.D dissertation, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland, p. 167.
- Zhang, C.-L. 2011. Experimental evidence for self-sealing of fractures in claystone. Physics and Chemistry of the Earth, Parts A/B/C, 36(17-18), 1972-1980. doi:10.1016/j.pce.2011.07.030.