DOI QR코드

DOI QR Code

국내외 특허데이터 분석을 통한 자연어처리의 의미분석 관련 기술동향 분석에 대한 연구

A Study On Technical Trend Analysis Related to Semantic Analysis of NLP Through Domestic/Foreign Patent Data

  • Hyun, Young-Geun (Division of Industrial Engineering, Ajou University) ;
  • Han, Jeong-Hyeon (Department of Industrial Engineering, Ajou University) ;
  • Chae, Uri (Department of Industrial Engineering, Ajou University) ;
  • Lee, Gi-Hyun (Department of Industrial Engineering, Ajou University) ;
  • Lee, Joo-Yeoun (Division of Industrial Engineering, Ajou University)
  • 투고 : 2019.10.11
  • 심사 : 2020.01.20
  • 발행 : 2020.01.28

초록

자연어처리 기술은 사람이 말하는 언어를 기계적으로 분석해 컴퓨터가 이해할 수 있는 형태로 만드는 것을 의미한다. 이것이 중요한 이유는 인공지능의 기본인 인간과 디바이스 간 커뮤니케이션을 위한 핵심기술이기 때문이다. 본 논문에서는 자연어처리, 특히 의미분석과 관련된 기술동향을 확인하기 위해 미국과 한국의 특허정보에 대해 분석하였으며, 본 연구를 통해 향후 자연어처리 관련 연구에 의미있는 정보제공을 그 목적으로 한다. 결론적으로, 국내 특허 수는 미국 대비 7.9% 수준이며, 주요 Keyword의 상이한 빈도는 기술적 방향성에 국가별로 차이가 있음을 확인하였다. 또한 상향 또는 하향 성향의 Keyword가 한국 대비 미국이 2배로 나타나 시대적 흐름을 상대적으로 더 반영한 것으로 분석되었다. 향후 연구에서는 실질적인 기술예측을 위해 상향 성향의 Keyword가 특허에서 어떻게 기술되고 있는지 구체적으로 분석하고자 한다.

NLP means the technology that mechanically analyzes a language spoken by a human and makes it into a form that can be understood by a computer. This is important because it is a core technology for communication between humans and devices, which is the basis of artificial intelligence. In this paper, I analyzed patent information of US and Korea in order to identify technical trends related to NLP, especially semantic analysis. and the purpose of this study is to provide meaningful information for future research on NLP. In conclusion, the number of Korea patents is 7.9% compared to the USA and the different frequencies of the major keywords were found to differ from country to country in technical direction. In addition, the upward or downward keywords are twice as many in the U.S. as in Korea, and reflect the trend of the times relatively more. Based on these results, in future study, I will analysis how upward trending keywords are described in actual patents for concrete technology prediction.

키워드

참고문헌

  1. J. K. Hong. (2017). Artificial Intelligence and Natural Language Processing. narasarang Publisher, 126, 128-148.
  2. H. J. Lee & J. W. Kim. (2017). A Study on the Natural Language Processing(NLP) Technical and Standardization Trend. Telecommunications Technology Association, 876-877.
  3. H. C. Lim & H. S. Lim & B. H. Yoon. (1994). Natural Language Processing research trend. The Korean Institute of Information Scientists and Engineers, 12(9), 20-30.
  4. D. Y. Lee. (2018). Natural Language Processing Research. KOREA INFORMATION SCIENCE SOCIETY. 771-1773.
  5. T. K. Lee & K. S. Shin. (2019) Performance Comparison of Natural Language Processing Model Based on Deep Neural Networks. Korea Institute Of Communication Sciences, 44(7), 1344-1350. DOI :10.7840/kics.2019.44.7.1344
  6. K. H. Park, S. H. Na, J. H. Shin & Y. K. Kim. (2019). BERT for Korean Natural Language Processing: Named Entity Tagging, Sentiment Analysis, Dependency Parsing and Semantic Role Labeling. The Korean Institute of Information Scientists and Engineers, 584-586.
  7. D. M. Park. (2016). Natural Language Processing of News Articles : A Case of NewsSource beta. Korean Society For Journalism And Communication Studies, 4-52.
  8. J. S. Chong, D. S. Kim, H. J. Lee & J. W. Kim. (2019). A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique : Focused on Open Source Software Projects on Github. Korea Intelligent Information Systems Society, 25(1), 1-19. DOI : 10.13088/jiis.2019.25.1.001
  9. J. Y. Park. (2018). Trend Analysis of Artificial Intelligence Technology Using Patent Information. The Korean Society Of Computer And Information, 23(4), 9-16. DOI :10.9708/jksci.2018.23.04.009
  10. S. M. Han, Y. W. Kim, S. Y. Yim, S. M. Jeong & Y. S. Shin. (2018). Technology & Industry Evaluation and Prediction Using Patent Data. KOREA INFORMATION SCIENCE SOCIETY, 426-428.
  11. S. H. Lee & Y. G. Cheong. (2016). Natural language Processing of Scenarios for Sentiment Analysis, The Korean Institute of Information Scientists and Engineers, 1671-1673.
  12. J. S. Kim. (2016). Emotion Prediction of Paragraph using Big Data Analysis. Journal of Digital Convergence, 14(11), 267-273.. DOI : 10.14400/JDC.2016.14.11.267
  13. S. W. Han & S. I. Kim. (2019). Suggestion of a Social Significance Research Model for User Emotion. Journal of the Korea Convergence Society, 10(3), 167-176. DOI :10.15207/JKCS.2019.10.3.167
  14. J. C. Choi. (2018). Big Data Patent Analysis Using Social Network Analysis. Journal of the Korea Convergence Society, 9(2), 251-257. DOI :10.15207/JKCS.2018.9.2.251
  15. M. S. Chung, S. H. Jeong & J. Y. Lee. (2018). Analysis of major research trends in artificial intelligence based on domestic/international patent data. Journal of Digital Convergence, 16(6), 1-9. DOI :10.14400/JDC.2018.16.6.000
  16. N. S. Min. (2014). Big Data Analysis Platform Technology R&D Trend through Patent Analysis. Journal of Digital Convergence, 12(9), 169-175. DOI : 10.14400/JDC.2014.12.9.169
  17. J. H. Lee. (2017). An Analysis on ICT-related Patent Trend in Leading Countries. Korea Institute Of Communication Sciences, 711-712.