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GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR IN

A THREE-DIMENSIONAL TWO-SPECIES

CHEMOTAXIS-STOKES SYSTEM WITH

TENSOR-VALUED SENSITIVITY

Bin Liu and Guoqiang Ren

Abstract. In this paper, we deal with a two-species chemotaxis-Stokes

system with Lotka-Volterra competitive kinetics under homogeneous Neu-

mann boundary conditions in a general three-dimensional bounded do-
main with smooth boundary. Under appropriate regularity assumptions

on the initial data, by some Lp-estimate techniques, we show that the

system possesses at least one global and bounded weak solution, in addi-
tion to discussing the asymptotic behavior of the solutions. Our results

generalizes and improves partial previously known ones.

1. Introduction

This paper is concerned with the following two-species chemotaxis-Stokes
system with Lotka-Volterra competitive kinetics:
(1.1)

(n1)t + u · ∇n1 = ∇ · (D1(n1)∇n1)−∇ · (n1S1(x, n1, v) · ∇v)

+µ1n1(1− n1 − a1n2) x ∈ Ω, t > 0,

(n2)t + u · ∇n2 = ∇ · (D2(n2)∇n2)−∇ · (n2S2(x, n2, v) · ∇v)

+µ2n2(1− a2n1 − n2) x ∈ Ω, t > 0,

vt + u · ∇v = 4v − v + αn1 + βn2, x ∈ Ω, t > 0,

ut +∇P = 4u+ (n1 + n2)∇φ, ∇ · u = 0, x ∈ Ω, t > 0,

(Di(ni)∇ni − niSi(x, ni, v) · ∇v) · ν = ∂v
∂ν = 0, u = 0, x ∈ ∂Ω, t > 0,

n1(x, 0)=n10(x), n2(x, 0)=n20(x), v(x, 0)=v0(x), u(x, 0)=u0(x), x ∈ Ω,
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where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω and ∂
∂ν denotes

the derivative with respect to the outer normal of ∂Ω. The system (1.1) is pro-
posed to describe the exercise of two species which impact on a single chemoat-
tractant in fluid, where n1 and n2 represent densities of species, v stands for
the chemical concentration, u shows the fluid velocity field and P denotes the
pressure of the fluid. µ1, µ2, α, β > 0 are constants, n10, n20, v0, u0, φ are known
functions satisfying

(1.2)


n10, n20 ∈ Cϑ(Ω) for certain ϑ > 0 with n10, n20 ≥ 0 in Ω,

v0 ∈W 1,∞(Ω) satisfies v0 ≥ 0 in Ω,

u0 ∈ D(Aεr) for some ε ∈ ( 3
4 , 1) and any r ∈ (1,∞)

with Ar representing the Stokes operator with domain D(Aεr) := W 2,r(Ω) ∩
W 1,r

0 (Ω) ∩ Lrσ(Ω), where Lrσ(Ω) := {ϕ ∈ Lr(Ω)|∇ · ϕ = 0} for r ∈ (1,∞).
As for the diffusion coefficient in (1.1), we suppose that D satisfies

(1.3) D1, D2 ∈ Cθloc([0,∞)) for some θ > 0,

as well as

(1.4) D1(n1) ≥ CD1
nm1−1

1 for all n1 > 0 with m1 > 1 and CD1
> 0

and

(1.5) D2(n2) ≥ CD2
nm2−1

2 for all n2 > 0 with m2 > 1 and CD2
> 0.

Under the assumptions of Di(ni), the first two equations of system (1.1) may
be degenerate at ni = 0, i = 1, 2.

Except for this, we assume that the tensor-valued sensitivity S1, S2 satisfies

(1.6) S1, S2 ∈ C2(Ω× [0,∞)2;R3×3)

as well as

(1.7) |S1(x, n1, v)| ≤ CS1(1 + n1)−α1 , |S2(x, n2, v)| ≤ CS2(1 + n2)−α2

for all (x, ni, v) ∈ Ω× [0,∞)2, i = 1, 2, with some CSi > 0 and αi > 0, i = 1, 2,
αi > 0 means that the magnitude of the chemotactic flux is weakened when
the bacterial density increases. The function φ is known and fulfills

(1.8) φ ∈W 1,∞(Ω).

Processes of directed movement of cells in response to a chemical stimulus,
referred to as chemotaxis, play an important role in the interaction of cells
with their environment. A typical model describing chemotaxis is the classical
Keller-Segel system derived by Keller and Segel in 1970s [13]. The mathe-
matical analysis of classical Keller-Segel system and the variant thereof mainly
concentrates on the boundedness and blow-up of the solutions [8,11,25]. As the
blow-up has not been observed in the real biological process, many mechanisms,
such as nonlinear porous medium diffusion, saturation effect, logistic source,
etc., are introduced to avoid the blow-up of solutions [12,15,29]. In the past few
decades, Keller-Segel system has attracted extensive attentions. For a helpful
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overview of many models arising out of this fundamental description we refer to
the survey [3]. To better understand the model (1.1), it is necessary to separate
study two-species chemotaxis system and chemotaxis-Stokes system with sin-
gle specie. For two-species chemotaxis model, this has been extensively studied
by many authors. When the two-species have influence in each other, namely,
the system has Lotka-Volterra competitive kinetics. In the two-dimensional
case, Bai and Winkler [1] obtained global existence of solution to the system
(1.1) with Di(ni) = 1, Si(x, ni, v) = χi > 0, i = 1, 2. Moreover, they also
taken into account asymptotic behavior of solutions to the system (1.1), when

a1, a2 ∈ (0, 1), n1(·, t)→ 1−a1

1−a1a2
, n2(·, t)→ 1−a2

1−a1a2
, v(·, t)→ α(1−a1)+β(1−a2)

1−a1a2
in

L∞(Ω) as t→∞; when a1 ≥ 1 > a2 > 0, n1(·, t)→ 0, n2(·, t)→ 1, v(·, t)→ β
in L∞(Ω) as t → ∞, Mizukami [22] improved this result. Recently, Mizukami
[23] further modified the result in [22], this is filling up the gap between [1]
and [22]. In the three-dimensional case, Lin and Mu [16] supposed that µ1

and µ2 are large enough to obtained a similar result. In the high dimensional
case, Lin et al. [17] and Zhang et al. [47] are obtained unique global classical
bounded solution, respectively. However, the asymptotic behavior of solution
is not involved. When the system has a logistic source, but the two-species
have not influence in each other, in other wards, the competitive kinetics term
µ1n1(1 − n1 − a1n2) and µ2n2(1 − a2n1 − n2) are replaced by µ1n1(1 − n1)
and µ2n2(1− n2), Negreanu et al. [27] and [26] separate discussed the system
has unique uniformly bounded solution with vt = ε4v+h(n1, n2, v), ε ∈ [0, 1),
Mizukami et al. [24] remove the restriction of ε ∈ [0, 1) to obtained a similar
result. When the third equation degenerate into elliptic equation, Stinner et
al. [32] and Lin et al. [18] are obtained global existence of solution to the system
(1.1) with Di(ni) = 1, Si(x, ni, v) = χi > 0, i = 1, 2. Moreover, they also taken
into account asymptotic behavior of solutions to the system (1.1).

For chemotaxis-Stokes system with single specie, this model which was pro-
posed in [36] for the spatio-temporal evolution in populations of oxytactically
moving bacteria that interact with a surrounding fluid through transport and
buoyancy with the third equation of (1.1) is replaced by vt+u·∇v = 4v−nf(v),
the corresponding model is given by:

(1.9)


nt + u · ∇n = 4n−∇ · (nχ(n, v) · ∇v) x ∈ Ω, t > 0,

vt + u · ∇v = 4v − nf(v), x ∈ Ω, t > 0,

ut + κ(u · ∇)u = 4u+∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0 x ∈ Ω, t > 0.

When 4n is replaced by 4nm, Winkler [43] recent analysis has revealed that
m > 7

6 for all reasonably regular initial data, a corresponding no-flux Neumann
initial-boundary value problem possesses a globally defined weak solution which
is bounded in three-dimensional bounded convex domains. Tao et al. [33] which
assured global solvability within the large range m > 8

7 , but only in a class

of weak solutions locally bounded in Ω × [0,∞). Winkler [46] which allows
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for the construction of global weak solution to an associated initial-boundary
value problem under the milder assumption that m > 9

8 . Moreover, the ob-
tained solutions are shown to approach the spatially homogeneous steady state
( 1
|Ω|
∫

Ω
n0, 0, 0) in the large time limit. As in the classical Keller-Segel model

where the chemoattractant is produced rather than consumed by bacteria, the
relevant Keller-Segel-fluid system of the form

(1.10)


nt + u · ∇n = 4n−∇ · (nS(x, n, v) · ∇v) x ∈ Ω, t > 0,

vt + u · ∇v = 4v − v + n, x ∈ Ω, t > 0,

ut + κ(u · ∇)u = 4u+∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0 x ∈ Ω, t > 0.

Compare with (1.9), the mathematical analysis of (1.10) is quite few. When
S(x, n, v) is a tensor-valued sensitivity satisfying some dampening condition in
(1.7), Wang et al. [39] obtained global existence and boundedness in a Keller-
Segel-Stokes system (κ = 0) in two-dimensional smoothly bounded domains, to
the best of our knowledge, this is the first result on global existence and bound-
edness in a Keller-Segel-Stokes system with tensor-valued sensitivity. With the
same author [40], when α > 1

2 , they also obtained global classical solutions
which is uniformly bounded in three-dimensional smoothly bounded domains.
Parallel to the case of the corresponding Keller-Segel-Navier-Stokes system,
Wang [37] proved the system (1.10) possesses at least one global very weak
solution with α > 1

3 in three-dimensional smoothly bounded domains. Winkler

[45] shown that if α > 1
3 , the problem (1.10) with κ = 0 possesses a global

classical solution. When the system (1.10) has a logistic source rn − µn2 and
external force g in the fluid equation, Tao et al. [34] shown that under the
explicit condition µ ≥ 23 and suitable regularity assumptions on the initial
data, the corresponding initial-boundary problem possesses a global classical
solution which is bounded in three-dimensional smoothly bounded domains.
Apart from this, it is also proved that if r = 0, then both n(·, t) and v(·, t)
decay to zero with respect to the norm in L∞ as t→∞, and that if moreover∫∞

0

∫
Ω
|g|2 < 0, then also u(·, t) → 0 in L∞ as t → ∞. In two-dimensional

smoothly bounded domains, Tao et al. [35] obtained the Keller-Segel-Navier-
Stokes possesses a global classical bounded solution when µ > 0, and also get
the same large time behavior. Jiu et al. [19] shown that under the conditions
m ≥ 1

3 and α > 6
5−m, and proper regularity hypotheses on the initial data, the

corresponding initial-boundary problem possesses at least one global bounded
weak solution for the Keller-Segel-Stokes system with nonlinear diffusion and
logistic source in the three-dimensional bounded domains. When 4n is re-
placed by 4nm, S(x, n, v) ≡ 1, Black [2] proved that if m > 5

3 , the problem

(1.10) admits at least one global weak solution, in addition, if m > 4
3 , the

problem (1.10) admits at least one global very weak solution. For the latest
progress of other chemotaxis-fluid system, please refer to [4, 16,21,38,44].
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For two-species chemotaxis-Stokes system with Lotka-Volterra competitive
kinetics, the mathematical analysis of (1.1) is quite fragmentary. When Di(ni)
≡ 1, Si(x, ni, v) = χi, i = 1, 2, the third equation turned into vt + u · ∇v =
4v−(αn1+βn2)v, the fourth equation turn into Navier-Stokes equation, Hirata
et al. [9] obtained global classical and bounded solution which is unique in
two-dimensional smoothly bounded domains. Moreover, they also taken into
account asymptotic behavior of solutions to the system (1.1), when a1, a2 ∈
(0, 1), n1(·, t)→ 1−a1

1−a1a2
, n2(·, t)→ 1−a2

1−a1a2
, v(·, t)→ 0, u(·, t)→ 0 in L∞(Ω) as

t→∞; when a1 ≥ 1 > a2 > 0, n1(·, t)→ 0, n2(·, t)→ 1, v(·, t)→ 0, u(·, t)→ 0
in L∞(Ω) as t → ∞. To the best of our knowledge, this is the first result
on global existence and boundedness for two-species chemotaxis-Navier-Stokes
system with competitive kinetics. The same authors [10] shown that global
existence of weak solutions in three-dimensional smoothly bounded domains,
the system is the same as in [9]. When Di(ni) ≡ 1, Si(x, ni, v) = χi, i = 1, 2,
the third equation turned into vt + u · ∇v = 4v − (αn1 + βn2)v, the fourth
equation is the same as in (1.1), Cao et al. [5] obtained the system possesses
a classical solution which is unique in the sense that it allows up to addition
of spatially constants to the pressure P with χ

µ < ξ0, where χ := max{χ1, χ2},
µ := min{µ1, µ2}, ξ0 > 0 is a constant in three-dimensional smoothly bounded
domains. Moreover, they obtained the similar results for asymptotic behavior
of solutions in [9]. When Di(ni) ≡ 1, Si(x, ni, v) = χi, i = 1, 2, the third
equation and fourth equation is the same as in (1.1), Cao et al. [6] proved a
similar result with the different conditions.

Throughout above analysis, compared with two-species chemotaxis system
and chemotaxis-Stokes system with single specie, it is not so mature that the
two-species chemotaxis-Stokes system with Lotka-Volterra competitive kinetics.
Inspired by the arguments in previous studies [10, 20, 45], we mainly investi-
gate the global existence and boundedness in a three-dimensional two-species
chemotaxis-Stokes system with tensor-valued sensitivity to the system (1.1), in
addition to discuss the asymptotic behavior of the solutions. More precisely,
we have:

Theorem 3.1. Let a1, a2 ≥ 0, α, β > 0, Ω ⊂ R3 be a bounded domain with
smooth boundary. Suppose that D(ni) and Si, i = 1, 2, satisfy (1.3)-(1.7) with
mi ≥ 1

3 , i = 1, 2 and

m1 + α1 >
23

18
, m2 + α2 >

23

18
.

Then for any choice of the initial data n01, n02, v0, u0, φ fulfill (1.2) and (1.8),
system (1.1) possesses at least one non-negative global weak solution (n1, n2,
v, u, P ) in the sense of Definition 2.1. Also, this solution is bounded in Ω ×
(0,∞) in the sense that

‖n1(·, t)‖L∞(Ω) + ‖n2(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖u(·, t)‖W 1,∞(Ω) ≤ C
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for all t > 0 with some constant C > 0. In addition, v and u are continuous in
Ω × (0,∞), and n1, n2 as an L∞(Ω)-valued function is continuous on [0,∞)
with respect to the weak-∗ topology, i.e.,

n1, n2 ∈ C0
w−∗([0,∞);L∞(Ω)).

Theorem 4.1. Let D1(n1) = D2(n2) ≡ 1, assume that the condition of Theo-
rem 3.1 holds. Then the solution of (1.1) has the following properties:

(i) Let a1, a2 ∈ (0, 1), under the condition that there exists γ1 such that

4γ1 − (1 + γ1)2a1a2 > 0

and

c1C
2
S1

(1− a1)

4a1µ1(1− a1a2)
+
γ1c2C

2
S2

(1− a2)

4a2µ2(1− a1a2)
<

4γ1 − (1 + γ1)2a1a2

a1α2γ1 + a2β2 − a1a2αβ(1 + γ1)
,

then

n1(·, t)→ N1, n2(·, t)→ N2, v(·, t)→ V1, u(·, t)→ 0 in L∞ as t→∞,
where

N1 :=
1− a1

1− a1a2
, N2 :=

1− a2

1− a1a2
, V1 := αN1 + βN2

as well as
c1 = max{1, (1 + ‖n1‖L∞[0,‖n10‖L∞(Ω)+1])

1−α1}
and

c2 = max{1, (1 + ‖n2‖L∞[0,‖n20‖L∞(Ω)+1])
1−α2}.

(ii) Let a1 ≥ 1 > a2. under the condition that there exist γ3 and a′1 ∈ [1, a1]
such that

4γ3 − (1 + γ3)2a′1a2 > 0

and

µ2 >
C2
S2
γ3c2(α2a′1γ3 + β2a2 − αβa′1a2(1 + γ3))

4a2(4γ3 − a′1a2(1 + γ3)2)
,

then

n1(·, t)→ 0, n2(·, t)→ 1, v(·, t)→ β, u(·, t)→ 0 in L∞ as t→∞.
where

c2 = max{1, (1 + ‖n2‖L∞[0,‖n20‖L∞(Ω)+1])
1−α2}.

In this paper, we use symbols c and C as some generic positive constants.
Sometimes, in order to distinguish them, we use symbols Ci and ci (i = 1, 2, . . . )
which depend on m,CD1

, CD2
, CS1

, CS2
, p,Ω and the initial data only. More-

over, for simplicity, u(x, t) is written as u, the integral
∫

Ω
u(x)dx is written as∫

Ω
u(x).
The rest of this paper is organized as follows. In Section 2, we summarize

some basic definitions and some useful lemmas in order to prove the main result.
In Section 3, we show the main theorem, firstly, and give some fundamental
estimates for the solution to the system (2.1) to prove Theorem 3.1. In Section
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4, we start with stating the main theorem, and construct the function to prove
Theorem 4.1.

2. Preliminaries

Under the assumptions of Di(ni), the first two equations of system (1.1) may
be degenerate at ni = 0, i = 1, 2. Therefore, system (1.1) does not allow for
classical solvability in general. We introduce the following definition of weak
solution.

Definition 2.1. Let T ∈ (0,∞). A quadruple of nonnegative functions (n1, n2,
v, u) defined in Ω×(0, T ) is called a weak solution of system (1.1) if the following
conditions are satisfied

ni ∈ L1
loc(Ω× [0, T )), v ∈ L∞loc(Ω× [0, T )) ∩ L1

loc([0, T );W 1,1(Ω)),

u ∈ L1
loc([0, T );W 1,1(Ω)), G(ni), ni|∇v|, ni|u| ∈ L1

loc(Ω× [0, T ));

the integral equalities

−
∫ T

0

∫
Ω

n1ψt −
∫

Ω

n10ψ(·, 0)

= −
∫ T

0

∫
Ω

G1(n1)4 ψ +

∫ T

0

∫
Ω

n1(S1(x, n1, v) · ∇v) · ∇ψ

+

∫ T

0

∫
Ω

n1u · ∇ψ + µ1

∫ T

0

∫
Ω

n1(1− n1 − a1n2)ψ

for any ψ ∈ C∞0 (Ω× [0, T )) satisfying ∂ψ
∂ν = 0 on ∂Ω× (0, T ), as well as

−
∫ T

0

∫
Ω

n2ψt −
∫

Ω

n20ψ(·, 0)

= −
∫ T

0

∫
Ω

G2(n2)4 ψ +

∫ T

0

∫
Ω

n2(S2(x, n2, v) · ∇v) · ∇ψ

+

∫ T

0

∫
Ω

n2u · ∇ψ + µ2

∫ T

0

∫
Ω

n2(1− a2n1 − n2)ψ

for any ψ ∈ C∞0 (Ω× [0, T )) satisfying ∂ψ
∂ν = 0 on ∂Ω× (0, T ), and

−
∫ T

0

∫
Ω

vψt −
∫

Ω

v0ψ(·, 0)

= −
∫ T

0

∫
Ω

∇v · ∇ψ −
∫ T

0

∫
Ω

v · ψ + α

∫ T

0

∫
Ω

n1 · ψ

+ β

∫ T

0

∫
Ω

n2 · ψ +

∫ T

0

∫
Ω

uv · ∇ψ
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for any ψ ∈ C∞0 (Ω× [0, T )), as well as

−
∫ T

0

∫
Ω

uψt −
∫

Ω

u0ψ(·, 0) = −
∫ T

0

∫
Ω

∇u · ∇ψ +

∫ T

0

∫
Ω

(n1 + n2)∇φ · ψ

for all ψ ∈ C∞0 (Ω× [0, T );R3) fulfilling ∇ψ ≡ 0 in Ω× (0, T ), where we let

Gi(s) :=

∫ s

0

Di(σ)dσ for s ≥ 0, i = 1, 2.

If (n1, n2, v, u) is a weak solution of system (1.1) in Ω×(0, T ) for all T ∈ (0,∞),
then we call (n1, n2, v, u) a global weak solution.

We will construct solutions of (1.1) as limits of solutions to relevant regular-
ized approximated problems, and give some basic estimates for the solutions to
the regularized system. First of all, we approximated the diffusion coefficient
function in (1.1) by a family (Diε)ε∈(0,1) of functions

Diε ∈ C2([0,∞)) such that Diε(ni) ≥ ε for all ni > 0 (i = 1, 2),

and

Di(ni) ≤ Diε(ni) ≤ Di(ni) + 2ε for all ni > 0 (i = 1, 2).

Then, in order to obtain homogeneous Neumann boundary conditions for both
ni (i = 1, 2) and v, we let (ρε)ε∈(0,1) ⊂ C∞0 (Ω) be a family of standard cut-off
functions satisfying 0 ≤ ρε ≤ 1 in Ω and ρε → 1 in Ω as ε→ 0, and define

Siε(x, ni, v) = ρεSi(x, ni, v), x ∈ Ω, ni ≥ 0, (i = 1, 2), v ≥ 0

for ε ∈ (0, 1) to approximate the sensitivity tensor Si, which implies that
Siε(x, ni, v) = 0 on ∂Ω for each fixed ε ∈ (0, 1), i = 1, 2. The initial data
ni0ε ∈ Cϑ(Ω) for some ϑ > 0 with ni0ε ≥ 0, i = 1, 2 in Ω, v0ε ∈ W 1,∞(Ω)
fulfills v0ε ≥ 0 in Ω, and u0ε ∈ D(Aεr) for certain ε ∈ ( 3

4 , 1) and{
‖n10ε‖L∞(Ω) ≤ ‖n10‖L∞(Ω) + 1, ‖n20ε‖L∞(Ω) ≤ ‖n20‖L∞(Ω) + 1,

‖v0ε‖W 1,∞(Ω) ≤ ‖v0‖W 1,∞(Ω) + 1, ‖u0ε‖W 1,∞(Ω) ≤ ‖u0‖W 1,∞(Ω) + 1.

Therefore, for any such ε, the regularized problems
(2.1)

(n1ε)t + uε · ∇n1ε = ∇ · (D1ε(n1ε)∇n1ε)−∇ · (n1εS1ε(x, n1ε, vε) · ∇vε)
+µ1n1ε(1− n1ε − a1n2ε), x ∈ Ω, t > 0,

(n2ε)t + uε · ∇n2ε = ∇ · (D2ε(n2ε)∇n2ε)−∇ · (n2εS2ε(x, n1ε, vε) · ∇vε)
+µ2n2ε(1− a2n1ε − n2ε), x ∈ Ω, t > 0,

vεt + uε · ∇vε = 4vε − vε + αn1ε + βn2ε, x ∈ Ω, t > 0,

uεt +∇Pε = 4uε + (n1ε + n2ε)∇φ, ∇ · uε = 0, x ∈ Ω, t > 0,
∂n1ε

∂ν = ∂n2ε

∂ν = ∂vε
∂ν = 0, uε = 0, x ∈ ∂Ω, t > 0,

n1ε(x, 0) = n10ε(x), n2ε(x, 0) = n20ε(x),

vε(x, 0) = v0ε(x), uε(x, 0) = u0ε(x), x ∈ Ω.
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According to the well-established fixed point arguments, the local solvability
of (2.1) can be obtained, the proof is similar to that in [42], so here we omit
the proof.

Lemma 2.1. Let Ω ⊂ R3 be a bounded domain with smooth boundary. Assume
that (1.2)-(1.8) holds. Then for each ε ∈ (0, 1), q > 3, there exist Tmax ∈ (0,∞)
and a classical solution (n1ε, n2ε, vε, uε, Pε) such that

n1ε, n2ε ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

vε ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ∩ L∞loc([0, Tmax);W 1,q(Ω)),

uε ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ∩ L∞loc([0, Tmax);D(Aε)),
Pε ∈ C1,0(Ω)× (0, Tmax)),

where Tmax denotes the maximal existence time. Also, the above solution is
unique up to addition of spatially constants to the pressure Pε. Moreover, we
have niε > 0 i = 1, 2 and vε > 0 in Ω× (0, Tmax), and if Tmax < +∞, then
(2.2)
‖n1ε(·, t)‖L∞(Ω) + ‖n2ε(·, t)‖L∞(Ω) + ‖vε(·, t)‖W 1,q(Ω) + ‖Aεruε(·, t)‖L2(Ω) →∞

as t→ Tmax, where ε, r are taken from (1.2).

Lemma 2.2. For each ε ∈ (0, 1), there exists a constant C := C(τ) > 0, the
solutions of (2.1) satisfies

(2.3)

∫
Ω

niε(·, t) ≤ C for all t ∈ (0, Tmax) i = 1, 2

as well as

(2.4)

∫ t+τ

t

∫
Ω

n2
iε ≤ C for all t ∈ (0, Tmax − τ) i = 1, 2

and

(2.5)

∫
Ω

vε(·, t) ≤ max
{∫

Ω

v0, (α+ β)C
}

for all t ∈ (0, Tmax).

Proof. The proof is similar to [28, Lemma 2.2], so we omitted it. �

Lemma 2.3 ([37, Lemma 3.4]). Let T > 0 and y ∈ C0([0, T )) ∩ C1(0, T ) be
such that

y′(t) + ay(t) ≤ g(t) for all t ∈ (0, T ),

where g ∈ L1
loc(R) has the property that

1

τ

∫ t+τ

t

g(s)ds ≤ b for all t ∈ (0, T )

with some τ > 0 and b > 0. Then

y(t) ≤ y(0) +
bτ

1− e−aτ
for all t ∈ [0, T ).
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Lemma 2.4 (Gagliardo-Nirenberg interpolation inequality, [30, Lemma 2.2]).
Let 0 < θ ≤ p ≤ 2N

N−2 . There exists a positive constant CGN such that for all

uε ∈W 1,2(Ω) ∩ Lθ(Ω),

(2.6) ‖uε‖Lp(Ω) ≤ CGN (‖∇uε‖aL2(Ω)‖uε‖
1−a
Lθ(Ω)

+ ‖uε‖Lθ(Ω))

is valid with a =
N
θ −

N
p

1−N2 +N
θ

∈ (0, 1).

Lemma 2.5 ([43, Corollary 3.4]). Let p ∈ [1,∞) and r ∈ [1,∞] be such that

(2.7)

{
r < 3p

3−p if p ≤ 3,

r ≤ ∞ if p > 3.

Then for all K > 0 exists C = C(p, r,K) such that if for some ε ∈ (0, 1) and
Tmax > 0 we have

(2.8) ‖niε(·, t)‖Lp(Ω) ≤ K for all t ∈ (0, Tmax),

then

(2.9) ‖Duε(·, t)‖Lr(Ω) ≤ C for all t ∈ (0, Tmax).

Lemma 2.6 ([19, Lemma 3.3]). Suppose that Ω ⊂ R3 be a bounded domain with
smooth boundary. Let q > 1 and γ ∈ [2, 6q]. Then there exists C = C(q, γ) > 0
such that for all ω ∈ C2(Ω) the following interpolation inequality

(2.10) ‖∇ω‖γLγ(Ω) ≤ C
(
‖∇|∇ω|q‖

3γ−6
3q−1

L2(Ω)‖∇ω‖
6q−γ
3q−1

L2(Ω) + ‖∇ω‖γL2(Ω)

)
holds.

Lemma 2.7 ([41, Lemma 1.3]). Let Ω ⊂ RN (N ∈ N) be a bounded domain
with smooth boundary and let (et4)t≥0 be the Neumann heat semigroup in Ω.
Then there exist constants C, λ1 > 0 depending only on Ω such that if 1 ≤ q ≤
p ≤ ∞, then

‖∇et4ψ‖Lp(Ω) ≤ C(1 + t−
1
2−

N
2 ( 1

q−
1
p ))e−λ1t‖ψ‖Lq(Ω)

holds for all t > 0 and each ψ ∈ Lp(Ω).

3. Existence of global and bounded weak solution

In this section, we start with expounding the main theorem, and then es-
tablish some a priori estimates for solutions to the approximated system (2.1)
with non-degenerate diffusion, it is crucial ingredient for the proof of our main
results. As a first step towards this, we show the main theorem.

Theorem 3.1. Let a1, a2 ≥ 0, α, β > 0, Ω ⊂ R3 be a bounded domain with
smooth boundary. Suppose that D(ni) and Si, i = 1, 2, satisfy (1.3)-(1.7) with
mi ≥ 1

3 , i = 1, 2 and

m1 + α1 >
23

18
, m2 + α2 >

23

18
.
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Then for any choice of the initial data n01, n02, v0, u0, φ fulfill (1.2) and (1.8),
system (1.1) possesses at least one non-negative global weak solution (n1, n2,
v, u, P ) in the sense of Definition 2.1. Also, this solution is bounded in Ω ×
(0,∞) in the sense that

‖n1(·, t)‖L∞(Ω) + ‖n2(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖u(·, t)‖W 1,∞(Ω) ≤ C

for all t > 0 with some constant C > 0. In addition, v and u are continuous in
Ω × (0,∞), and n1, n2 as an L∞(Ω)-valued function is continuous on [0,∞)
with respect to the weak-∗ topology, i.e.,

n1, n2 ∈ C0
w−∗([0,∞);L∞(Ω)).

Remark 3.1. Theorem 3.1 show that the system (1.1) admit a global bounded
weak solution nothing to do with the size of χ

µ and the dampening intensity of

logistic source, this is very important in the proof of [5], [6] and [10]. We now
have to leave an open question on existence of global bounded weak solution
when mi ≥ 1

3 , i = 1, 2, m1 +α1 >
23
18 ,m2 +α2 ≤ 23

18 or m1 +α1 ≤ 23
18 ,m2 +α2 >

23
18 and mi <

1
3 , i = 1, 2, m1 + α1 >

23
18 ,m2 + α2 >

23
18 .

Then, we will give some priori estimates and prove the main theorem.

Lemma 3.1. There exists a constant C > 0 depending on ε ∈ (0, 1) such that

(3.1)

∫
Ω

|∇uε|2 ≤ C for all t ∈ (0, Tmax)

and

(3.2)

∫ t+τ

t

∫
Ω

|Auε|2 ≤ C for all t ∈ (0, Tmax − τ),

where τ = min{1, 1
2Tmax}.

Proof. The proof is similar to that in [34, Lemma 2.4], so we omitted it. �

Lemma 3.2. There exists C > 0 depending on ε ∈ (0, 1) such that

(3.3)

∫
Ω

v2
ε +

∫
Ω

|∇vε|2 ≤ C for all t ∈ (0, Tmax).

Proof. The proof boundedness of ‖∇vε‖L2(Ω) is similar to that in [34, Lemma
2.6], so we omitted it, by the Poincaré inequality, the boundedness of ‖vε‖L2(Ω)

is obtained. This completes the proof. �

Lemma 3.3. Let Ω ⊂ R3 be a bounded domain with smooth boundary, p > 1,
suppose that the assumptions in Lemma 2.1 holds. Then for all ε ∈ (0, 1), we
can find a constant C > 0 independent of ε and obtain the following inequality

d

dt

(∫
Ω

np1ε +

∫
Ω

np2ε

)(3.4)
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+
p(p− 1)

2

(
CD1

∫
Ω

nm1+p−3
1ε |∇n1ε|2 + CD2

∫
Ω

nm2+p−3
2ε |∇n2ε|2

)
≤ p(p− 1)

2

(C2
S1

CD1

∫
Ω

np+1−m1−2α1

1ε |∇vε|2 +
C2
S2

CD2

∫
Ω

np+1−m2−2α2

2ε |∇vε|2
)

+C

for all t ∈ (0, Tmax), where CD1 , CD2 , CS1 and CS2 are as in (1.4), (1.5) and
(1.7), respectively.

Proof. We multiply the first two equation in (2.1) by pnp−1
1ε and use the fact

S1ε(x, n1ε, vε) = 0 on ∂Ω, we have

d

dt

∫
Ω

np1ε + p(p− 1)

∫
Ω

np−2
1ε D1ε(n1ε)|∇n1ε|2

= p(p− 1)

∫
Ω

np−1
1ε ∇n1ε · (S1ε(x, n1ε, vε) · ∇vε)(3.5)

+ µ1p

∫
Ω

np1ε − µ1p

∫
Ω

np+1
1ε − a1µ1p

∫
Ω

np1εn2ε

≤ p(p− 1)

∫
Ω

np−1
1ε ∇n1ε · (S1ε(x, n1ε, vε) · ∇vε)

+ µ1p

∫
Ω

np1ε − µ1p

∫
Ω

np+1
1ε

for all t ∈ (0, Tmax). Here we use the definition of Dε and (1.4), (1.5) to get
that

(3.6) p(p− 1)

∫
Ω

np−2
1ε Dε(n1ε)|∇n1ε|2 ≥ CD1p(p− 1)

∫
Ω

nm1+p−3
1ε |∇n1ε|2

for all t ∈ (0, Tmax). Then, due to (1.7), we obtain

p(p− 1)

∫
Ω

np−1
1ε ∇n1ε · (S1ε(x, n1ε, vε) · ∇vε)(3.7)

≤ CS1p(p− 1)

∫
Ω

np−α1−1
1ε |∇n1ε||∇vε|

≤ CD1
p(p− 1)

2

∫
Ω

nm1+p−3
1ε |∇n1ε|2 +

C2
S1
p(p− 1)

2CD1

∫
Ω

np+1−m1−2α1

1ε |∇vε|2

for all t ∈ (0, Tmax), here we use the Young’s inequality. Dealing with the last
two items, we also use the Young’s inequality to see that

(3.8) µ1p

∫
Ω

np1ε − µ1p

∫
Ω

np+1
1ε ≤ p(

µ1

p+ 1
)p+1(

p

µ1
)p =: C1

for all t ∈ (0, Tmax), where C1 is a positive constant. Similar to n1ε, n2ε has
similar inequality as above. Thus, we can obtain (3.4). This completes the
proof. �
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Lemma 3.4. Let q > 1, it holds for all ε ∈ (0, 1) that

d

dt

∫
Ω

|∇vε|2q +
2(q − 1)

q

∫
Ω

|∇|∇vε|q|2 + q

∫
Ω

|∇vε|2q−2|D2vε|2(3.9)

≤ 2q(2q−2+
√

3)2

∫
Ω

(α2n2
1ε+β2n2

2ε)|∇vε|2q−2 + 2q

∫
Ω

|∇vε|2q|Duε|+ C

on (0, Tmax) with some positive constant C determined by q.

Proof. The proof is similar to that in [19, Lemma 3.2], so we omitted it. �

Lemma 3.5. Let mi >
23
18 − αi (i = 1, 2) and suppose that p > 1 and q ≥ 2

satisfies

max{3− 3mi − 2αi, mi + 2αi −
1

3
} ≤ p

< (mi + αi −
5

6
)(3q − 1) +

4

3
−mi,(3.10)

i = 1, 2. Then for all η > 0 there exists C = C(p, q, η) > 0 such that for all
ε ∈ (0, 1)

(3.11)

∫
Ω

np+1−mi−2αi
iε |∇vε|2 ≤ η

∫
Ω

nmi+p−3
iε |∇niε|2 + η

∫
Ω

|∇|∇vε|q|2 + C

for all t ∈ (0, Tmax), i = 1, 2.

Proof. By the Hölder inequality, we have∫
Ω

np+1−mi−2αi
iε |∇vε|2 ≤

(∫
Ω

n
3
2 (p+1−mi−2αi)
iε

) 2
3
(∫

Ω

|∇vε|6
) 1

3

= ‖n
p+mi−1

2
iε ‖

2(p+1−mi−2αi)

p+mi−1

L
3(p+1−mi−2αi)

p+mi−1 (Ω)

‖∇vε‖2L6(Ω)(3.12)

for all t ∈ (0, Tmax). Due to p ≥ 3 − 3mi − 2αi, we have 3(p+1−mi−2αi)
p+mi−1 ≤ 6,

i = 1, 2. Thus, by the Gagliardo-Nirenberg interpolation inequality there exist
some positive constants c1, c2 may be determined by p such that

‖n
p+mi−1

2
iε ‖

2(p+1−mi−2αi)

p+mi−1

L
3(p+1−mi−2αi)

p+mi−1 (Ω)

≤ c1‖∇n
p+mi−1

2
iε ‖

2(p+1−mi−2αi)

p+mi−1 σ1

L2(Ω) ‖n
p+mi−1

2
iε ‖

2(p+1−mi−2αi)

p+mi−1 (1−σ1)

L
2

p+mi−1 (Ω)
(3.13)

+ ‖n
p+mi−1

2
iε ‖

2(p+1−mi−2αi)

p+mi−1

L
2

p+mi−1 (Ω)

≤ c2

(∫
Ω

nmi+p−3
iε |∇niε|2 + 1

) 3(p+1−mi−2αi)−2

3(p+mi−1)−1
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for all t ∈ (0, Tmax) with

σ1 =

3(p+mi−1)
2 − p+mi−1

p+1−mi−2αi

1− 3
2 + 3(p+mi−1)

2

∈ [0, 1]

due to p > 3 − 3mi − 2αi and p > mi + 2αi − 1
3 , i = 1, 2. Due to 6 ∈ [2, 6q],

from Lemma 2.6, there exist c3, c4 > 0 such that

‖∇vε‖2L6(Ω) ≤ c3‖∇|∇vε|
q‖

4
3q−1

L2(Ω)‖∇vε‖
2q−2
3q−1

L2(Ω) + c3‖∇vε‖2L2(Ω)

≤ c4
(∫

Ω

|∇|∇vε|q|2 + 1
) 2

3q−1

for all t ∈ (0, Tmax).(3.14)

Since p < (mi + αi − 5
6 )(3q − 1) + 4

3 −mi, i = 1, 2, we have

3(p+ 1−mi − 2αi)− 2

3(p+mi − 1)− 1
+

2

3q − 1
< 1.

Combining with (3.12)-(3.14) and using Young’s inequality, the desired results
are obtained. This completes the proof. �

Lemma 3.6. Let mi >
23
18 − αi (i = 1, 2) and suppose that p > 1 and q ≥ 2

satisfies

(3.15) p > max{2−mi,
4

9
(3q − 1) +

4

3
−mi}, i = 1, 2.

Then for all η > 0 there exists C = C(p, q, η) > 0 such that for all ε ∈ (0, 1)

(3.16)

∫
Ω

n2
iε|∇vε|2q−2 +

∫
Ω

n2
iε ≤ η

∫
Ω

np+mi−3
iε |∇niε|2 + η

∫
Ω

|∇|∇vε|q|2 +C

for all t ∈ (0, Tmax), i = 1, 2.

Proof. By the Hölder inequality, we have∫
Ω

n2
iε|∇vε|2q−2 ≤

(∫
Ω

n3
iε

) 2
3
(∫

Ω

|∇vε|6q−6
) 1

3

= ‖n
p+mi−1

2
iε ‖

4
p+mi−1

L
6

p+mi−1 (Ω)
‖∇vε‖2(q−1)

L6(q−1)(Ω)(3.17)

for all t ∈ (0, Tmax), i = 1, 2. Since p > 2−mi, i = 1, 2, we have 6
p+mi−1 ≤ 6,

by the Gagliardo-Nirenberg interpolation inequality there exist some positive
constants c1, c2 may be determined by p such that

‖n
p+mi−1

2
iε ‖

4
p+mi−1

L
6

p+mi−1 (Ω)
≤ c1‖∇n

p+mi−1

2
iε ‖

4
p+mi−1σ2

L2(Ω) ‖n
p+mi−1

2
iε ‖

4
p+mi−1 (1−σ2)

L
2

p+mi−1 (Ω)

+ c1‖n
p+mi−1

2
iε ‖

4
p+mi−1

L
2

p+mi−1 (Ω)
(3.18)

≤ c2

(∫
Ω

np+mi−3
iε |∇niε|2 + 1

) 4
3(p+mi−1)−1
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for all t ∈ (0, Tmax), with

σ2 =
3(p+mi−1)

2 − 3(p+mi−1)
6

1− 3
2 + 3(p+mi−1)

2

∈ [0, 1]

due to p > 2−mi. Since 6(q − 1) ∈ [2, 6q], from Lemma 2.6, we have

‖∇vε‖2(q−1)

L6(q−1)(Ω)
≤ c3‖∇|∇vε|q‖

2[3(q−1)−1]
3q−1

L2(Ω) ‖∇vε‖
2

3q−1

L2(Ω) + c3‖∇vε‖2(q−1)
L2(Ω)

≤ c4
(∫

Ω

|∇|∇vε|q|2 + 1
) 3(q−1)−1

3q−1

for all t ∈ (0, Tmax).(3.19)

Since p > 4
9 (3q − 1) + 4

3 −mi, we have

4

3(p+mi − 1)− 1
+

3(q − 1)− 1

3q − 1
< 1.

By the Young’s inequality, there exists a positive constant c5 such that

(3.20)

∫
Ω

n2
iε|∇vε|2q−2 ≤ η

2

∫
Ω

np+mi−3
iε |∇niε|2 +

η

2

∫
Ω

|∇|∇vε|q|2 + c5

for all t ∈ (0, Tmax). Similarly, by the Gagliardo-Nirenberg interpolation in-
equality there exists a positive constant c6 such that

(3.21)

∫
Ω

n2
iε ≤

η

2

∫
Ω

np+mi−3
iε |∇niε|2 + c6

for all t ∈ (0, Tmax). Combining with (3.20) and (3.21), the desired results are
obtained. This completes the proof. �

Lemma 3.7. For any q > 1, then for all η > 0, there exists a positive constant
C such that

(3.22)

∫
Ω

|∇vε|2q|Duε| ≤ η
∫

Ω

|∇|∇vε|q|2 + C for all t ∈ (0, Tmax),

where C determined by q and λ4.

Proof. We invoke the Hölder inequality with same exponents 2 to see that

(3.23)

∫
Ω

|∇vε|2q|Duε| ≤
(∫

Ω

|∇vε|4q
) 1

2
(∫

Ω

|Duε|2
) 1

2≤M
(∫

Ω

|∇vε|4q
) 1

2

for all t ∈ (0, Tmax), here we used the result of Lemma 3.1. Owing to 2 ≤ 4q ≤
6q satisfying the condition of Lemma 2.6, thus exists a positive constant c1
determined by q such that(∫

Ω

|∇vε|4q
) 1

2

= ‖∇vε‖2qL4q(Ω)

≤ c1
(
‖∇|∇vε|q‖

3(2q−1)
3q−1

L2(Ω) ‖∇vε‖
q

3q−1

L2(Ω) + ‖∇vε‖2qL2(Ω)

)
≤ η

M

∫
Ω

|∇|∇vε|q|2 +
C

M
(3.24)
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for all t ∈ (0, Tmax), here we use the Young’s inequality, combine with (3.23)
and (3.24), the desired result can be obtained. This completes the proof. �

Lemma 3.8. Let mi > 1 and mi >
23
18 − αi, (i = 1, 2). Then for sufficiently

large p > 1 and q ≥ 2 in Lemmas 3.5 and 3.6, there exists a constant C =
C(p, q) > 0 such that

(3.25) ‖n1ε‖Lp(Ω) + ‖n2ε‖Lp(Ω) + ‖∇vε‖L2q(Ω) ≤ C for all t ∈ (0, Tmax).

Proof. Since mi >
23
18 − αi, we have mi + αi − 5

6 >
4
9 , so

4

9
(3q − 1) +

4

3
−mi < (mi + αi −

5

6
)(3q − 1) +

4

3
−mi, i = 1, 2

for any q > 1, there exist sufficiently large p ≥ 1 such that

4

9
(3q − 1) +

4

3
−mi < p < (mi + αi −

5

6
)(3q − 1) +

4

3
−mi, i = 1, 2.

Combining with Lemmas 3.5-3.7, choosing properly small η > 0, there exist
some constant c1 = c1(p, q), c2 = c2(p, q) > 0 such that

d

dt

(∫
Ω

n1ε +

∫
Ω

n2ε +

∫
Ω

|∇vε|2q
)

+ c1

(∫
Ω

|∇n
p+m1−1

2
1ε |2 +

∫
Ω

|∇n
p+mi−1

2
2ε |2 +

∫
Ω

|∇|∇vε|q|2
)
≤ c2(3.26)

for all t ∈ (0, Tmax). By the Gagliardo-Nirenberg interpolation inequality, there
exist constants c1, c2 > 0 may be determined by p such that

‖niε‖pLp(Ω) = ‖n
p+mi−1

2
iε ‖

2p
p+mi−1

L
2p

p+mi−1 (Ω)

≤ c1‖∇n
p+mi−1

2
iε ‖

2p
p+mi−1%1

L2(Ω) ‖n
p+mi−1

2
iε ‖

2p
p+mi−1 (1−%1)

L
2

p+mi−1 (Ω)
(3.27)

+ c1‖n
p+mi−1

2
iε ‖

2p
p+mi−1

L2(Ω)

≤ c2‖∇n
p+mi−1

2
iε ‖

2p
p+mi−1%2 + c9

for all t ∈ (0, Tmax), i = 1, 2, where

%1 =

1
2 −

1
2p

p+mi−1
2 − 1

6

(p+mi − 1) ∈ [0, 1]

and
2p

p+mi − 1
%1 =

p− 1
p+mi−1

2 − 1
6

≤ 2,

here we use the fact that mi ≥ 1
3 . Using the Young’s inequality to (3.27), there

exists a constant c3 > 0 independent of ε ∈ (0, 1) such that

(3.28)

∫
Ω

npiε ≤ c3
∫

Ω

|∇n
p+mi−1

2
iε |2 + c3, i = 1, 2.
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By Lemma 2.6 and Young’s inequality, there exist two constants c4, c5 > 0 may
be determined by p, such that

‖∇vε‖2qL2q(Ω) ≤ c4
(
‖∇|∇vε|q‖

6(q−1)
3q−1

L2(Ω) ‖∇vε‖
4q

3q−1

L2(Ω) + ‖∇vε‖2qL2(Ω)

)
≤ c5

∫
Ω

|∇|∇vε|q|2 + c5(3.29)

for all t ∈ (0, Tmax). Therefore, together with (3.28) and (3.29), we have∫
Ω

np1ε +

∫
Ω

np2ε +

∫
Ω

|∇vε|2q(3.30)

≤ c6

∫
Ω

|∇n
p+m1−1

2
1ε |2 +

∫
Ω

|∇n
p+m2−1

2
2ε |2 +

∫
Ω

|∇|∇vε|q|2

for all t ∈ (0, Tmax), with c6 = c3 + c5. Now, let y(t) :=
∫

Ω
np1ε +

∫
Ω
np2ε +∫

Ω
|∇vε|2q, h(t) :=

∫
Ω
|∇n

p+m1−1
2

1ε |2 +
∫

Ω
|∇n

p+m2−1
2

2ε |2 +
∫

Ω
|∇|∇vε|q|2, from

(3.28) and (3.32), there exist some positive constants c7, c8 > 0 such that

y′(t) + c7y(t) + c7h(t) ≤ c8 for all t ∈ (0, Tmax).

Following from a comparison argument, we have

y(t) ≤ c9 := max{y(0),
c8
c7
} for all t ∈ (0, Tmax).

This completes the proof. �

Corollary 3.1. Let m1 > 1, m2 > 1 and m1 >
23
18 − α1, m2 >

23
18 − α2. Then

for any p > 1, q > 1 and r ≥ 1, there exists some constat C > 0 such that for
any ε ∈ (0, 1)
(3.31)
‖n1ε‖Lp(Ω)+‖n2ε‖Lp(Ω)+‖∇vε‖Lq(Ω)+‖Duε(·, t)‖Lr(Ω)≤C for all t ∈ (0, Tmax).

Proof. This proof is almost similar to that of [40, Corollary 3.2], to avoid rep-
etition, so we omitted it. �

Proposition 3.1. Suppose the assumptions of Lemma 2.1 hold with m1 > 1,
m2 > 1 and m1 > 23

18 − α1, m2 > 23
18 − α2. Then system (2.10) admits a

global classical solution (n1ε, n2ε, vε, uε, Pε), which is uniformly bounded for all
ε ∈ (0, 1),
(3.32)
‖n1ε(·, t)‖L∞(Ω) + ‖n2ε(·, t)‖L∞(Ω) + ‖vε(·, t)‖W 1,∞(Ω) + ‖uε(·, t)‖W 1,∞(Ω)≤C

for all t ∈ (0,∞), with some constant C > 0. Moreover, we also have

(3.33) ‖Aεuε(·, t)‖L2(Ω) ≤ C for all t ∈ (0,∞).

Proof. This proof is relying on the properties for the Neumann heat semigroup
and Stokes semigroup, we can find in [7,31,41]. In accordance with (3.27) with
p > 3, we can apply Lemma 2.5 to obtain (2.9) with r =∞, and therefore

(3.34) ‖uε(·, t)‖W 1,∞(Ω) ≤ C for all t ∈ (0, Tmax)
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is valid. Taking the results of Corollary 3.1 with appropriately large p and q as
a initial point, we make use of Moser-type iteration to the first two equations
in (2.1) and then obtain

(3.35) ‖niε(·, t)‖L∞(Ω) ≤ C (i = 1, 2) for all t ∈ (0, Tmax).

On account of (3.34) and (3.35), we apply the parabolic regularity theory to
the third equation in (2.1) to get

(3.36) ‖vε(·, t)‖W 1,∞(Ω) ≤ C for all t ∈ (0, Tmax).

Finally, we prove (3.33), let ε ∈ ( 3
4 , 1), we apply the Helmholtz projection and

the fractional power Aεr to the fourth equation in (2.1), it follows from the
variation-of-constants formula that

uε(·, t) = e−tAru0ε +

∫ t

0

e−(t−s)ArP[(n1ε + n2ε)∇φ](·, s)ds, t ∈ (0, Tmax),

we can obtain

‖Aεruε(·, t)‖L2(Ω) ≤ ‖Aεre−tAru0ε‖L2(Ω)

+

∫ t

0

‖Aεre−(t−s)ArP[(n1ε + n2ε)∇φ](·, s)‖L2(Ω)ds

≤ c1t
−ε‖u0ε‖L2(Ω)+c18(‖n1ε‖L∞(Ω)+‖n2ε‖L∞(Ω))‖∇φ‖L2(Ω)

×
∫ t

0

(t− s)−εe−λ(t−s)ds

≤ c2

for all t ∈ (0, Tmax), with some constants c1, c2, λ > 0. Along with (3.34)-(3.36)
and blow-up criterion (2.2), we infer that Tmax=∞ and prove the proposition.
This completes the proof. �

Lemma 3.9. Suppose the assumptions of Lemma 2.1 hold with m1 > 1, m2 > 1
and m1 >

23
18 − α1, m2 >

23
18 − α2. Then one can find θ ∈ (0, 1) such that for

some C > 0

(3.37) ‖vε‖
Cθ,

θ
2 (Ω×[t,t+1])

≤ C for all t ∈ (0,∞)

as well as

(3.38) ‖uε‖
Cθ,

θ
2 (Ω×[t,t+1])

≤ C for all t ∈ (0,∞)

and such that for any ς > 0 there exists C(ς) > 0 fulfilling

(3.39) ‖∇vε‖
Cθ,

θ
2 (Ω×[t,t+1])

≤ C for all t ∈ [ς,∞).

Proof. This proof can find in [19, Lemma 3.12], see also [14]. so we omitted
it. �

Finally, we prove the main theorem.
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The proof of Theorem 3.1. Firstly, with the help of Proposition 3.1 we derive
that for each ε ∈ (0, 1), system (2.1) admits a classical solution (n1ε, n2ε, vε,

uε, Pε) which is defined for all t > 0. Let ϕ ∈ W 3,2
0 (Ω), it is known by the

embedding theorem, we see that W 3,2
0 (Ω) ↪→ W 1,∞(Ω) with N = 3. Thus,

ϕ ∈ L∞(Ω) and ‖ϕ‖W 1,∞(Ω) ≤ c1‖ϕ‖W 3,2
0 (Ω) with some positive constant c1.

Let κ > m1 satisfy κ ≥ 2(m1 − 1). Multiplying both sides of the first equation
in (2.10) by κnκ−1

1ε ϕ and integrating by parts on Ω, we obtain

1

κ

∫
Ω

( ∂
∂t
nκ1ε

)
ϕ

=

∫
Ω

nκ−1
1ε

[
∇ ·
(
D1ε(n1ε)∇n1ε− n1εS1ε(x, n1ε, vε) · ∇vε

)
−uε∇n1ε

]
·ϕ

+ µ1

∫
Ω

nκ1ε(1− n1ε − a1n2ε)ϕ

= − (κ− 1)

∫
Ω

nκ−2
1ε D1ε(n1ε)|∇n1ε|2ϕ−

∫
Ω

nκ−1
1ε D1ε(n1ε)∇n1ε · ∇ϕ(3.40)

+ (κ− 1)

∫
Ω

nκ−1
1ε ∇n1ε ·

(
S1ε(x, n1ε, vε) · ∇vε

)
ϕ

+

∫
Ω

nκ1ε

(
S1ε(x, n1ε, vε) · ∇vε

)
·∇ϕ+

1

κ

∫
Ω

nκ1εuε · ∇ϕ

+ µ1

∫
Ω

nκ1ε(1− n1ε − a1n2ε)ϕ

for all t ∈ (0,∞). From Lemma 3.9, we can fix positive constants c2, c3 and c4
such that

(3.41) |niε| ≤ c2, |∇vε| ≤ c3 and |uε| ≤ c4 in Ω× (0,∞) for all ε ∈ (0, 1),

i = 1, 2, on account of the fact that D1ε < D1 + 2ε in (0,∞) for all ε ∈ (0, 1),
we have

(3.42) D1ε(n1ε) ≤ c5 := ‖D1‖L∞(0,c2) + 2 in Ω× (0,∞) for all ε ∈ (0, 1).

Let p := κ−m1 + 1 satisfies p > 1 and p ≥ m− 1, by (3.26), yield that

(3.43)

∫ ∞
0

∫
Ω

nκ−2
1ε |∇n1ε|2 =

∫ ∞
0

∫
Ω

np+m1−3
1ε |∇n1ε|2 ≤ c6

for all t ∈ (0,∞) with certain constant c6 > 0. Using (3.41), (3.42) and Young’s
inequality, we have
(3.44)∣∣∣−(κ− 1)

∫
Ω

nκ−2
1ε D1ε(n1ε)|∇n1ε|2ϕ

∣∣∣≤ (κ− 1)c5 ·
(∫

Ω

nκ−2
1ε |∇n1ε|2

)
·‖ϕ‖L∞(Ω)

and ∣∣∣−∫
Ω

nκ−1
1ε D1ε(n1ε)∇n1ε · ∇ϕ

∣∣∣
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≤ c5 ·
(∫

Ω

nκ−1
1ε |∇n1ε|

)
·‖∇ϕ‖L∞(Ω)

≤ c5 ·
(∫

Ω

nκ−2
1ε |∇n1ε|2 +

∫
Ω

nκ1ε

)
·‖∇ϕ‖L∞(Ω)(3.45)

≤
(
c5

∫
Ω

nκ−2
1ε |∇n1ε|2 + c24c

κ
21|Ω|

)
·‖∇ϕ‖L∞(Ω)

as well as ∣∣∣(κ− 1)

∫
Ω

nκ−1
1ε ∇n1ε ·

(
S1ε(x, n1ε, vε) · ∇vε

)
ϕ
∣∣∣

≤ (κ− 1) ·
(∫

Ω

nκ−1
1ε |∇n1ε|

)
·CS1c3‖ϕ‖L∞(Ω)

≤ (κ− 1)CS1
c3 ·

(∫
Ω

nκ−2
1ε |∇n1ε|2 + cκ2 |Ω|

)
·‖ϕ‖L∞(Ω)(3.46)

and

(3.47)
∣∣∣∫

Ω

nκ1ε

(
S1ε(x, n1ε, vε) · ∇vε

)
·∇ϕ

∣∣∣≤ cκ2c3CS1
|Ω|‖∇ϕ‖L∞(Ω)

as well as

(3.48)
∣∣∣ 1
κ

∫
Ω

nκ1εuε · ∇ϕ
∣∣∣≤ 1

κ
cκ2c4|Ω|‖∇ϕ‖L∞(Ω)

and

(3.49)
∣∣∣µ1

∫
Ω

nκ1ε(1− n1ε − a1n2ε)ϕ
∣∣∣≤ µ1(cκ2 + cκ+1

2 )‖ϕ‖L∞(Ω).

Due to W 3,2
0 (Ω) ↪→ W 1,∞(Ω), combining with (3.44)-(3.49), there exists a

constant c7 > 0 such that

‖ ∂
∂t
nκ1ε(·, t)‖(W 3,2

0 (Ω))∗ ≤ c7 ·
(∫

Ω

nκ−2
1ε |∇n1ε|2 + 1

)
for all t ∈ (0,∞) and any ε ∈ (0, 1). According to (3.43), for each T > 0 we
have

(3.50)

∫ T

0

‖ ∂
∂t
nκ1ε(·, t)‖(W 3,2

0 (Ω))∗dt ≤ c6c7 + c7T

for all ε ∈ (0, 1). A similar argument we have

(3.51)

∫ T

0

‖ ∂
∂t
nκ2ε(·, t)‖(W 3,2

0 (Ω))∗dt ≤ c8T + c8

for all ε ∈ (0, 1), with some constant c8 > 0. Multiplying both sides of the first
equation in (2.10) by ψ and integrating by parts on Ω, we obtain∫

Ω

( ∂
∂t
n1ε

)
ψ(3.52)

=

∫
Ω

[
∇ ·
(
D1ε(n1ε)∇n1ε − n1εS1ε(x, n1ε, vε) · ∇vε

)
−uε∇n1ε

]
·ψ
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+ µ1

∫
Ω

n1ε(1− n1ε − a1n2ε)ψ

=

∫
Ω

G1(n1ε)4ψ +

∫
Ω

(
n1εS1ε(x, n1ε, vε) · ∇vε

)
∇ψ +

∫
Ω

n1εuε · ∇ψ

+ µ1

∫
Ω

n1ε(1− n1ε − a1n2ε)ψ

for all t ∈ (0,∞), where we have set G1(s) :=
∫ s

0
D1(σ)dσ for s ≥ 0. Recalling

that D1ε < D1 + 2ε in (0,∞) we can estimate

(3.53) G1(n1ε) ≤ c9 := c2 ·
(
‖D1‖L∞(0,c21) +2

)
in Ω× (0,∞) for all ε ∈ (0, 1).

Similar to Lemma 3.23 in [43], there exist constants c10, c11 > 0 such that

(3.54)

∫ T

0

‖ ∂
∂t
n1ε(·, t)‖(W 2,2

0 (Ω))∗dt ≤ c10

and

(3.55)

∫ T

0

‖ ∂
∂t
n2ε(·, t)‖(W 2,2

0 (Ω))∗dt ≤ c11

for all ε ∈ (0, 1). In accordance with Lemma 3.9, the Arzelá-Ascoli theorem
along with a standard extraction procedure yields a sequence (εj)j∈N ⊂ (0, 1)
with εj → 0 as j →∞ such that

(3.56) vε → v in C0
loc(Ω× [0,∞)),

(3.57) ∇vε → ∇v in C0
loc(Ω× (0,∞)),

(3.58) uε → u in C0
loc(Ω× [0,∞)),

hold with some limit functions v and u belonging to the indicated spaces.
Passing to a subsequence if necessary, by means of Proposition 3.1 we can
achieve that for some ni ∈ L∞(Ω× (0,∞)) we moreover have

(3.59) niε
∗
⇀ ni in L∞(Ω× (0,∞)), i = 1, 2,

(3.60) ∇vε
∗
⇀ ∇v in L∞(Ω× (0,∞)),

(3.61) Duε
∗
⇀ Du in L∞(Ω× (0,∞)).

We fix κ > m1 satisfy κ ≥ 2(m1 − 1) and combine (3.51) with (3.44) for
p := 2κ − m1 + 1 to see that for each T > 0, (εκ)ε∈(0,1) is bounded in

L2((0, T );W 1,2(Ω)) with
(
∂
∂tn

κ
1ε

)
ε∈(0,1)

being bounded in L1((0, T ); (W 3,2
0 (Ω))?).

Therefore, an Aubin-Lions lemma applies to yield strong precompactness of
(nκ1ε)ε∈(0,1) in L2(Ω × (0, T )), whence along a suitable subsequence we have
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nκ1ε → bκ and hence n1ε → b a.e. in Ω × (0,∞) for some nonnegative mea-
surable b : Ω × (0,∞) → R. By Egorov’s theorem, we know that necessarily
n1 = b, thus, we have

(3.62) niε → ni a.e. in Ω× (0,∞), i = 1, 2.

Finally, as the embedding L∞(Ω) ↪→ (W 2,2
0 (Ω))? is compact, the Arzelà-Ascoli

once more applies to say that the equicontinuity property (3.54) together with
the boundedness of (n1ε)ε∈(0,1) in C0([0,∞);L∞(Ω) ensures that

(3.63) niε → ni in C0
loc

(
[0,∞); (W 2,2

0 (Ω))∗
)
, i = 1, 2,

holds after a further extraction of an adequate subsequence. The additional
regularity property

(3.64) n1 ∈ C0
w−∗([0,∞);L∞(Ω)), n2 ∈ C0

w−∗([0,∞);L∞(Ω)).

thereafter is a consequence of (3.63) and the fact that Ci := ‖ni‖L∞(Ω×(0,∞)),
i = 1, 2 is finite: first, from the latter property it follows that there exists a null
set N ⊂ [0,∞) such that for all t ∈ [0,∞)\N we have ni(·, t) ∈ L∞(Ω) with
‖ni(·, t)‖L∞(Ω) ≤ Ci, i = 1, 2. As [0,∞)\N is dense in [0,∞), for an arbitrary
t0 ∈ [0,∞) we can find (tj)j∈N ⊂ [0,∞)\N such that tj → t0 as j → ∞,

and extracting a subsequence if necessary we can obtain that ni(·, t)
∗
⇀ n̄i in

L∞(Ω) as j → ∞, with some n̄i ∈ L∞(Ω) satisfying ‖n̄i‖L∞(Ω) ≤ Ci, i = 1, 2.

Since (3.61) assert that moreover ni(·, tj)→ ni(·, t0) in (W 2,2
0 (Ω))? as j →∞,

this allows us to identify n̄i = ni(·, t0) and to conclude that thus actually
ni(·, t) ∈ L∞(Ω) for all t ∈ [0,∞), with ‖ni(·, t)‖L∞(Ω) ≤ Ci for all t ≥ 0.
The property (3.62) can now be verified by partially repeating this argument:
given any t0 ≥ 0 and (tj)j∈N ⊂ [0,∞)\N such that tj → t0 as j → ∞ we
know that (ni(·, tj)))j∈N is bounded in L∞(Ω), and that for all ϕ ∈ C∞0 (Ω) we
have

∫
Ω
ni(·, tj))ϕ →

∫
Ω
ni(·, t0)ϕ as j → ∞ by (3.61). By density of C∞0 (Ω)

in L1(Ω), this proves that indeed ni(·, tj)
∗
⇀ ni(·, t0) in L∞(Ω) as j →∞.

Now the verification of the claimed weak solution property of (n1, n2, v, u)
is straightforward: whereas the nonnegativity of ni, i = 1, 2 and v and the
integrability requirements in conditions of Definition 2.1 are immediate from
(3.56)-(3.59) and (3.62), the integral identities in Definition 2.1 can be derived
by standard arguments from the corresponding weak formulations in the ap-
proximate system (2.1) upon letting ε = εj → 0 and using (3.59) and (3.62) as
well as (3.56)-(3.58), (3.60) and (3.61). This completes the proof. �

4. Asymptotic behavior of the solution

In this section, we consider a special case with D1(n1) = D2(n2) ≡ 1, then
the weak solution becomes classical solution, we begin with stating the main
theorem, and construct the function to prove it. As a first step towards this,
we show the main theorem.
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Theorem 4.1. Let D1(n1) = D2(n2) ≡ 1, assume that the condition of Theo-
rem 3.1 holds. Then the solution of (1.1) has the following properties:

(i) Let a1, a2 ∈ (0, 1), under the condition that there exists γ1 such that

4γ1 − (1 + γ1)2a1a2 > 0

and

c1C
2
S1

(1− a1)

4a1µ1(1− a1a2)
+
γ1c2C

2
S2

(1− a2)

4a2µ2(1− a1a2)
<

4γ1 − (1 + γ1)2a1a2

a1α2γ1 + a2β2 − a1a2αβ(1 + γ1)
,

then

n1(·, t)→ N1, n2(·, t)→ N2, v(·, t)→ V1, u(·, t)→ 0 in L∞ as t→∞,

where

N1 :=
1− a1

1− a1a2
, N2 :=

1− a2

1− a1a2
, V1 := αN1 + βN2

as well as

c1 = max{1, (1 + ‖n1‖L∞[0,‖n10‖L∞(Ω)+1])
1−α1}

and

c2 = max{1, (1 + ‖n2‖L∞[0,‖n20‖L∞(Ω)+1])
1−α2}.

(ii) Let a1 ≥ 1 > a2 under the condition that there exist γ3 and a′1 ∈ [1, a1]
such that

4γ3 − (1 + γ3)2a′1a2 > 0

and

µ2 >
C2
S2
γ3c2(α2a′1γ3 + β2a2 − αβa′1a2(1 + γ3))

4a2(4γ3 − a′1a2(1 + γ3)2)
,

then

n1(·, t)→ 0, n2(·, t)→ 1, v(·, t)→ β, u(·, t)→ 0 in L∞ as t→∞,

where

c2 = max{1, (1 + ‖n2‖L∞[0,‖n20‖L∞(Ω)+1])
1−α2}.

We will give the following lemma which will give stabilization in (1.1).

Lemma 4.1 ([9, Lemma 4.6]). Let n ∈ C0(Ω × [0,∞)) satisfying that there
exist C1 > 0 and θ ∈ (0, 1) such that

‖n‖
Cθ,

θ
2 (Ω×[t,t+1])

≤ C for all t ≥ 1.

Assume that ∫ ∞
1

∫
Ω

(n−N∗)2 <∞

with some constant N∗. Then

n(·, t)→ N∗ as t→∞.
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Lemma 4.2 ([23, Lemma 2.1]). Let a, b, c, d, e, f ∈ R. Suppose that

a > 0, ad− b2

4
> 0, adf +

bce

4
− c2d

4
− b2f

4
− ae2

4
> 0.

Then there exists ε > 0 such that

ay2
1 + by1y2 + cy1y3 + dy2

2 + ey2y3 + fy2
3 ≥ ε(y2

1 + y2
2 + y2

3)

holds for all y1, y2, y3 ∈ R.

4.1. Case 1: a1, a2 ∈ (0, 1)

In this subsection, we will analysis convergence of (n1, n2, v, u) as t → 0.
To get the desire results, we give the following key estimate for stabilization in
(1.1) in the case a1, a2 ∈ (0, 1).

Lemma 4.3. Let a1, a2 ∈ (0, 1). Under the assumption of Theorem 4.1(i), the
solution of (1.1) has the property that there exist γ1, γ2 > 0 and ε1 > 0 such
that the nonnegative function E1 and F1 defined by

E1 :=

∫
Ω

(n1 −N1 −N1 ln
n1

N1
) + γ1

a1µ1

a2µ2

∫
Ω

(n2 −N2 −N2 ln
n2

N2
) +

γ2

2

∫
Ω

v2

and

F1 :=

∫
Ω

(n1 −N1)2 +

∫
Ω

(n2 −N2)2 +

∫
Ω

(v − V1)2

satisfy

(4.1) E1(t) ≥ 0 for all t > 0

and

(4.2)
d

dt
E1(t) ≤ −ε1F1(t) for all t > 0,

where N1 = 1−a1

1−a1a2
, N2 = 1−a2

1−a1a2
and V1 = αN1 + βN2.

Proof. Let A1(t), B1(t) and C1(t) defined as

A1(t) :=

∫
Ω

(n1 −N1 −N1 ln
n1

N1
),

B1(t) :=

∫
Ω

(n2 −N2 −N2 ln
n2

N2
)

and

C1(t) :=
1

2

∫
Ω

v2,

and we write
E1(t) = A1(t) + γ1

a1µ1

a2µ2
B1(t) + γ2C1(t).

Taking the similar procedure in [9, Lemma 4.1], we know (4.1) holds. By the
straightforward calculation we have

d

dt
E1(t) =

d

dt
A1(t) + γ1

a1µ1

a2µ2

d

dt
B1(t) + γ2

d

dt
C1(t)
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≤ − µ1

∫
Ω

(n1 −N1)2 − a1µ1(1 + γ1)

∫
Ω

(n1 −N1)(n2 −N2)(4.3)

−N1

∫
Ω

|∇n1|2

n2
1

+ CS1N1

∫
Ω

∇n1 · ∇v
(1 + n1)α1+1

− γ1a1µ1

a2

∫
Ω

(n2 −N2)2 − γ1a1µ1N2

a2µ2

∫
Ω

|∇n2|2

n2
2

+
γ1a1µ1N2CS2

a2µ2

∫
Ω

∇n2 · ∇v
(1 + n2)α2+1

− γ2

∫
Ω

|∇v|2 − γ2

∫
Ω

(v − V1)2

+ γ2α

∫
Ω

(n1 −N1)(v − V1) + γ2β

∫
Ω

(n2 −N2)(v − V1).

Using the (2.5) and Young’s inequality we have

(4.4) N1CS1

∫
Ω

∇n1 · ∇v
(1 + n1)α1+1

≤ N1

∫
Ω

|∇n1|2

n3
1

+
N1C

2
S1

4

∫
Ω

|∇v|2

(1 + n1)α1−1
,

due to
(4.5)∫

Ω

|∇v|2

(1 + n1)α1−2
≤

{
(1 + ‖n1‖L∞[0,‖n01‖L∞(Ω)])

1−α1
∫

Ω
|∇v|2, if α1 < 1,∫

Ω
|∇v|2, if α1 ≥ 1,

combining with (3.30) and (4.5), there exists a positive constant c1 such that

(4.6)

∫
Ω

|∇v|2

(1 + n1)α1−1
≤ c1

∫
Ω

|∇v|2,

substituting (4.6) into (4.4), we have

(4.7) N1CS1

∫
Ω

∇n1 · ∇v
(1 + n1)α1+1

≤ N1

∫
Ω

|∇n1|2

n2
1

+
c1N1C

2
S1

4

∫
Ω

|∇v|2.

Similar to (4.7), there exists a constant c2 > 0 such that

γ1a1µ1N2CS2

a2µ2

∫
Ω

∇n2 · ∇v
(1 + n2)α2+1

≤
γ1a1µ1N2C

2
S2

4a2µ2

∫
Ω

|∇v|2

(1 + n2)α2−1
+
γ1a1µ1N2

a2µ2

∫
Ω

|∇n2|2

n2
2

(4.8)

≤ γ1a1µ1N2

a2µ2

∫
Ω

|∇n2|2

n2
2

+
c2γ1a1µ1N2C

2
S2

4a2µ2

∫
Ω

|∇v|2.

Combining with (4.3)-(4.8), we obtain

d

dt
E1(t) ≤ − µ1

∫
Ω

(n1 −N1)2 − a1µ1(1 + γ1)

∫
Ω

(n1 −N1)(n2 −N2)

+ γ2α

∫
Ω

(n1 −N1)(v − V1)− γ1a1µ1

a2

∫
Ω

(n2 −N2)2

+ γ2β

∫
Ω

(n2 −N2)(v − V1)− γ2

∫
Ω

(v − V1)2
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−
(
γ2 −

c1N1C
2
S1

4
−
c2γ1a1µ1N2C

2
S2

4a2µ2

)∫
Ω

|∇v|2.

By the condition of Theorem 4.1(i), taking γ2 > 0 satisfies

c1C
2
S1
N1

4
+
γ1a1µ1c2C

2
S2
N2

4a2µ2
< γ2 <

a1µ1[4γ1 − (1 + γ1)2a1a2]

a1α2γ1 + a2β2 − a1a2αβ(1 + γ1)
,

it is easy to know that

γ2 −
c1N1C

2
S1

4
−
c2γ1a1µ1N2C

2
S2

4a2µ2
> 0.

Letting

a = µ1, b = a1µ1(1 + γ1), c = −γ2α, d =
γ1a1µ1

a2
, e = −γ2β, f = γ2.

By the straightforward calculation we have

a = µ1 > 0, ad− b2

4
=
a1µ

2
1(4γ1 − (1 + γ1)2a1a2)

4a2
> 0

and

adf +
bce

4
− c2d

4
− b2f

4
− ae2

4

=
µ1γ2

4a2
[a1µ1(4γ1−(1+γ1)2a1a2)− (a1α

2γ1 + a2β
2−a1a2αβ(1 + γ1))γ2] > 0.

From Lemma 4.2, there exists a constant ε1 > 0 such that

d

dt
E1(t) ≤ −ε1

(∫
Ω

(n1 −N1)2 +

∫
Ω

(n2 −N2)2 +

∫
Ω

(v − V1)2
)

for all t > 0.

This completes the proof. �

Lemma 4.4. Let a1, a2 ∈ (0, 1). Under the assumption of Theorem 4.1(i), the
solution of (1.1) satisfies that there exists a constant C2 > 0 such that

(4.9)

∫ ∞
1

∫
Ω

(n1 −N1)2 +

∫ ∞
1

∫
Ω

(n2 −N2)2 +

∫ ∞
1

∫
Ω

(v − V1)2 ≤ C2.

Proof. Integrating (4.2) over (1, t), we infer

(4.10) E1(t) + ε1

∫ t

1

F1(s)ds ≤ E1(0).

Therefore, combination of (4.10) with (4.2) implies (4.9). This completes the
proof. �
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4.2. Case 2: a1 ≥ 1 > a2

In this subsection, we will analysis convergence of (n1, n2, v, u) as t → 0.
To get the desire results, we give the following key estimate for stabilization in
(1.1) in the case a1 ≥ 1 > a2.

Lemma 4.5. Let a1 ≥ 1 > a2. Under the assumption of Theorem 4.1(ii), the
solution of (1.1) has the property that there exist γ3, γ4 > 0 and ε2 > 0 such
that the nonnegative function E2 and F2 defined by

E2 :=

∫
Ω

n1 + γ3
a′1µ1

a2µ2

∫
Ω

(n2 − 1− lnn2) +
γ4

2

∫
Ω

(v − β)2

and

F2 :=

∫
Ω

n2
1 +

∫
Ω

(n2 − 1)2 +

∫
Ω

(v − β)2

satisfy

(4.11) E2(t) ≥ 0 for all t > 0

and

(4.12)
d

dt
E2(t) ≤ −ε2F2(t) for all t > 0.

Proof. Letting

E2(t) =

∫
Ω

n1 + γ3
a′1µ1

a2µ2

∫
Ω

(n2 − 1− lnn2) +
γ4

2

∫
Ω

(v − β)2.

Taking the similar procedure in [9, Lemma 4.1], we know (4.11) holds. By the
straightforward calculation we have

d

dt
E2(t) ≤ − µ1

∫
Ω

n2
1 − a′1µ1(1 + γ3)

∫
Ω

n1(n2 − 1)− µ1(a′1 − 1)

∫
Ω

n1

− γ3a
′
1µ1

a2

∫
Ω

(n2 −N2)2 − γ3a
′
1µ1

a2µ2

∫
Ω

|∇n2|2

n2
2

+
γ3a
′
1µ1CS2

a2µ2

∫
Ω

∇n2 · ∇v
(1 + n2)α2+1

− γ4

∫
Ω

|∇v|2(4.13)

− γ4

∫
Ω

(v − β)2 + γ4α

∫
Ω

n1(v − β) + γ4β

∫
Ω

(n2 − 1)(v − β).

Similar to (4.8), there exists a constant c2 > 0 such that
(4.14)

γ3a
′
1µ1CS2

a2µ2

∫
Ω

∇n2 · ∇v
(1 + n2)α2+1

≤ γ3a
′
1µ1

a2µ2

∫
Ω

|∇n2|2

n2
2

+
c2γ3a

′
1µ1C

2
S2

4a2µ2

∫
Ω

|∇v|2.

Combining (4.13) with (4.14), we obtain

d

dt
E2(t) ≤ − µ1

∫
Ω

n2
1 − a′1µ1(1 + γ3)

∫
Ω

n1(n2 − 1) + γ4α

∫
Ω

n1(v − β)
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− γ3a
′
1µ1

a2

∫
Ω

(n2 − 1)2 + γ4β

∫
Ω

(n2 − 1)(v − β)(4.15)

− γ4

∫
Ω

(v − β)2 −
(
γ4 −

c2γ3a
′
1µ1C

2
S2

4a2µ2

)∫
Ω

|∇v|2.

By the condition of Theorem 4.1(ii), taking γ4 > 0 satisfies

γ3a
′
1µ1c2C

2
S2

4a2µ2
< γ2 <

a′1µ1[4γ3 − (1 + γ3)2a′1a2]

a′1α
2γ3 + a2β2 − a′1a2αβ(1 + γ3)

,

it is easy to know that

γ4 −
c2γ3a

′
1µ1C

2
S2

4a2µ2
> 0.

Letting

a = µ1, b = a′1µ1(1 + γ3), c = −γ4α, d =
γ3a
′
1µ1

a2
, e = −γ4β, f = γ4.

By the straightforward calculation we have

a = µ1 > 0, ad− b2

4
=
a′1µ

2
1(4γ3 − (1 + γ3)2a′1a2)

4a2
> 0

and

adf +
bce

4
− c2d

4
− b2f

4
− ae2

4

=
µ1γ4

4a2
[a′1µ1(4γ3−(1 + γ3)2a′1a2)− (a′1α

2γ3 + a2β
2−a′1a2αβ(1 + γ3))γ4] > 0.

From Lemma 4.2, there exists a constant ε2 > 0 such that

d

dt
E2(t) ≤ −ε2

(∫
Ω

(n1 −N1)2 +

∫
Ω

(n2 −N2)2 +

∫
Ω

(v − V1)2
)

for all t > 0.

This completes the proof. �

Lemma 4.6. Let a1 ≥ 1 > a2. Under the assumption of Theorem 4.1(ii), the
solution of (1.1) satisfies that there exists a constant C3 > 0 such that

(4.16)

∫ ∞
1

∫
Ω

n2
1 +

∫ ∞
1

∫
Ω

(n2 − 1)2 +

∫ ∞
1

∫
Ω

(v − β)2 ≤ C3.

Proof. The proof is similar to Lemma 4.4, so we omitted it. �

Lemma 4.7. Under the assumptions of Theorem 2.1 and Theorem 2.2, the
solution of (1.1) has the following property:

(4.17) ‖u(·, t)‖L∞(Ω) → 0 as t→∞.

Proof. Noting from Lemma 4.3 and Lemma 4.5 that exists a constant T > 0
such that

∫∞
T

∫
Ω

(αn1+βn2)2v2 <∞ and using Lemma 4.5 in [5], we can obtain
that ∫ ∞

T

∫
Ω

v2 <∞,
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which entails ‖v‖L∞(Ω) → 0. Next we will show that ‖u‖L∞(Ω) → 0, similar to
[5, Lemma 4.6], there exist some positive constants c1, c2, c3 such that

‖u‖L∞(Ω) ≤ c1‖Aθu‖L2(Ω) ≤ c2‖Aεu‖aL2(Ω)‖A
θu‖1−aL2(Ω) ≤ c3‖u‖

1−a
L2(Ω),

where θ ∈ ( 3
4 , ε) and a = θ

ε ∈ (0, 1), which means that it is sufficient to show
that

‖u(·, t)‖L2(Ω) → 0 as t→∞.
From the Poincaré inequality that there exists a constant c4 > 0 such that

‖u(·, t)‖2L2(Ω) ≤ c4‖∇u(·, t)‖2L2(Ω)

for all t ∈ (0,∞). Put (n̄1, n̄2) := (N1, N2) if a1, a2 ∈ (0, 1) or (n̄1, n̄2) := (0, 1)
if a1 ≥ 1 > 0. We infer from the fourth equation in (2.10) and Young’s
inequality that

1

2

d

dt

∫
Ω

u2 +

∫
Ω

|∇u|2

=

∫
Ω

(n1 − n̄1 + n2 − n̄2)∇φ · u+ (n̄1 + n̄2)

∫
Ω

∇φ · u

≤ 1

4c4

∫
Ω

u2 + c5

(∫
Ω

(n1 − n̄1)2 +

∫
Ω

(n2 − n̄2)2
)

+(n̄1 + n̄2)

∫
Ω

∇φ · u

for all t ∈ (0,∞) with some constant c5 > 0. Letting

y(t) :=

∫
Ω

u2 and h(t) := 2c5

(∫
Ω

(n1 − n̄1)2 +

∫
Ω

(n2 − n̄2)2
)

satisfy

y′(t) + c6y(t) ≤ h(t)

with some c6 > 0. Hence it holds that

y(t) ≤ y(0)e−c6t +

∫ t

0

e−c6(t−s)h(s)ds

≤ y(0)e−c6t +

∫ t
2

0

e−c6(t−s)h(s)ds+

∫ t

t
2

e−c6(t−s)h(s)ds.(4.18)

From Proposition 3.1 that there exists a constant c7 > 0 such that h(s) ≤ c7
for all s > 0 and hence we have

(4.19)

∫ t
2

0

e−c6(t−s)h(s)ds ≤ c7e−c6t
∫ t

2

0

ec6sds ≤ c8e−
c6
2 t

with some c7 > 0. On the other hand, noting from (4.9) and (4.13) that∫∞
0
h(s)ds <∞, we have

(4.20) 0 ≤
∫ t

t
2

e−c6(t−s)h(s)ds ≤
∫ t

t
2

h(s)ds→ 0 as t→∞.
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Thus, combination of (4.18) with (4.19) and (4.20) leads to

‖u(·, t)‖L2(Ω) = y(t)→ 0 as t→∞.
(4.17) follows from the dominated convergence theorem. This completes the
proof. �

Finally, we prove the main theorem.

The proof of Theorem 4.1. A combination of Lemmata 4.1-4.7 directly leads to
Theorem 4.1. �
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