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GEOMETRY OF ISOPARAMETRIC NULL HYPERSURFACES

OF LORENTZIAN MANIFOLDS

Samuel Ssekajja

Abstract. We define two types of null hypersurfaces as; isoparametric

and quasi isoparametric null hypersurfaces of Lorentzian space forms,
based on the two shape operators associated with a null hypersurface. We

prove that; on any screen conformal isoparametric null hypersurface, the
screen geodesics lie on circles in the ambient space. Furthermore, we prove

that the screen distributions of isoparametric (or quasi isoparametric)

null hypersurfaces with at most two principal curvatures are generally
Riemannian products. Several examples are also given to illustrate the

main concepts.

1. Introduction

The theory of null submanifolds of a semi-Riemannian manifold is one of the
most important topics of differential geometry. More precisely, null hypersur-
faces appears in general relativity as models of different types of black hole hori-
zons [11,12,22]. The study of non-degenerate submanifolds of semi-Riemannian
manifolds has many similarities with the Riemannian submanifolds. However,
in case the induced metric on the submanifold is degenerate, the study be-
comes more difficult and is strikingly different from the study of nondegenerate
submanifolds [11, 12]. Some of the pioneering work on null geometry is due to
Duggal-Bejancu [11], Duggal- Sahin [12] and Kupeli [17]. Such work motivated
many other researchers to invest in the study of null submanifolds, for example
[2–4,10,14,15,20] and many more references therein.

In the classical theory of non-degenerate submanifolds, a hypersurface is
called isoparametric if all its principal curvatures are constant. The first at-
tempt in studying these hypersurfaces was based on a smooth function which
was required to be isoparametrc. In fact, a smooth real-valued function F de-
fined on a Riemannian manifold M̃ is called an isoparametric function if both of
its classical Beltrami differential parameters ∆1F = |gradF |2 and ∆2F = ∆F
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(Laplacian of F ) are smooth functions of F itself. That is, both of the differ-
ential parameters are constant on each level set of F (see [7]). An isoparamet-

ric family of M̃ is the collection of level sets of a non-constant isoparametric
function F on M̃ . Thus, in the case where M̃ is a space form, a necessary
and sufficient condition for an oriented hypersurface M ⊂ M̃ to belong to an
isoparametric family is that all of its principal curvatures are constant (see [7],
Section 3.1 for more details).

Isoparametric hypersurfaces have received considerable attention from many
geometers due to their beautiful nature, and their theory has been analyzed
from several points of view: geometric, algebraic, analytic, and topological. See
some examples in [5–7,19,23] and many more references therein. With the aid
of Cartan ideas, [7, Theorem 3.12] proves that any connected isoparametric
hypersurface Mn of Rn+1 is an open subset of a flat hyperplane, a metric
hypersphere, or a spherical cylinder Sm×Rn−m. In the hyperbolic space Hn+1,
they prove that; a connected isoparametric hypersurface is an open subset of a
totally geodesic hyperplane, an equidistant hypersurface, a horosphere, a metric
hypersphere, or a tube over a totally geodesic submanifold of codimension
greater than one in Hn+1. In Sn+1, they prove Mn is an open subset of a
standard product of two spheres Sp(r) × Sq(s) ⊂ Sn+1(1) ⊂ Rp+1 × Rq+1 =
Rn+2, r2 + s2 = 1, where n = p+ q and r, s > 0. M. Kimura and S. Maeda [16]
give a characterization of isoparametric hypersurfaces in terms of geodesics.

In [24], Nomizu began the study of isoparametric hypersurfaces in semi-
Riemannian space forms by proving a generalization of Cartan’s formula for
spacelike hypersurfaces in a Lorentzian space form M̃(c) of constant sectional
curvature c. As a consequence of this formula, Nomizu showed that a spacelike
isoparametric hypersurface in M̃(c) can have at most two distinct principal
curvatures if c ≥ 0. Later on, Li and Xie [18] proved that this conclusion

also holds for spacelike isoparametric hypersurfaces in M̃(c) for c < 0. Magid
[19] studied isoparametric hypersurfaces in Lorentz space whose shape operator
is not diagonalizable, and Hahn [13] did an extensive study of isoparametric
hypersurfaces in semi-Riemannian space forms of arbitrary signatures. In the
null case, M. Navarro, O. Palmas and D. A. Solis [21] have studied null screen
isoparametric null in Lorentzian spaceforms, while in [4] the authors study null
hypersurfaces with constant screen principal curvatures.

In the present paper, we introduce isoparametric and quasi isoparametric
null hypersurfaces in semi-Riemannian space forms. Accordingly, we charac-
terize the above hypersurfaces. The paper is arranged as follows. In Section
2, we give the basic notions on null geometry needed for this paper. Sec-
tion 3 is devoted to isoparametric null hypersurfaces. In Section 4, we give a
characterization of isoparametric null hypersurfaces in terms of spacelike and
timelike geodesics. Finally, Section 5 is devoted to quasi isoparametric null
hypersurfaces and their charaterizations.
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2. Preliminaries

Let (M, g) be an (n + 2)-dimensional Lorentzian manifold with index q ∈
{1, . . . , n+ 1} and let M be a hypersurface of M . Let g be the induced tensor
field by g on M . Then, (M, g) is called a null hypersurface of M if g is of
constant rank n [11, p. 77]. Consider the vector bundle TM⊥ whose fibers
are defined as TxM

⊥ = {Yx ∈ TxM : gx(Xx, Yx) = 0, ∀Xx ∈ TxM}, for
any x ∈ M . Hence, a hypersurface M of M is null if and only if TM⊥ is
a distribution of rank 1 on M . Let M be a null hypersurface, we consider
the complementary distribution S(TM) to TM⊥ in TM , which is called a
screen distribution. It is well-known that S(TM) is non-degenerate (see [11,
Proposition 2.1] for more details). Thus, we have the decomposition

TM = S(TM) ⊥ TM⊥.(1)

As S(TM) is non-degenerate with respect to g, we have TM |M = S(TM) ⊥
S(TM)⊥, where S(TM)⊥ is the complementary vector bundle to S(TM) in
TM |M . Let (M, g) be a null hypersurface of (M, g). Then, there exists a
unique vector bundle tr(TM), called the null transversal bundle [11, Theorem
1.1] of M with respect to S(TM), of rank 1 over M such that for any non-zero
section E of TM⊥ on a coordinate neighbourhood U ⊂M , there exists a unique
section N of tr(TM) on U satisfying g(E,N) = 1, g(N,N) = g(N,Z) = 0, for
any section Z of S(TM). Hence, we have the following decomposition of TM .

TM |M = S(TM) ⊥ {TM⊥ ⊕ tr(TM)} = TM ⊕ tr(TM).(2)

Throughout this paper, Γ(Ξ) will denote the F(M)-module of differentiable
sections of a vector bundle Ξ. Let ∇ and ∇∗ denote the induced connections
on M and S(TM), respectively, and P be the projection of TM onto S(TM).
Then, the local Gauss-Weingarten equations of M and S(TM) are the following
(see [11, pp. 82–85] for more details);

∇XY = ∇XY + h(X,Y ) = ∇XY +B(X,Y )N,(3)

∇XN = −ANX +∇tXN = −ANX + τ(X)N,(4)

∇XPY = ∇∗XPY + h∗(X,PY ) = ∇∗XPY + C(X,PY )E,(5)

∇XE = −A∗EX +∇∗tXE = −A∗EX − τ(X)E, A∗EE = 0,(6)

for all X,Y ∈ Γ(TM), E ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)), where ∇ is the Levi-
Civita connection on M . In the above setting, B is the local second fundamental
form of M and C is the local second fundamental form of S(TM). Furthermore,
AN and A∗E are the shape operators on TM and S(TM) respectively, while
τ is a 1-form on TM . The above shape operators are related to their local
fundamental forms by the following relations

g(A∗EX,Y ) = B(X,Y ) and g(ANX,PY ) = C(X,PY )(7)
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for any X,Y ∈ Γ(TM). Moreover, g(A∗EX,N) = 0, and g(ANX,N) = 0 for
all X ∈ Γ(TM). From these relations, we notice that A∗E and AN are both
screen-valued operators.

Let ϑ = g(N, ·) be a 1-form metrically equivalent to N defined on M . Take
η = i∗ϑ to be its restriction on M , where i : M → M is the inclusion map.
Then, from the fact that ∇ is a metric connection, it is easy to show that

(∇Xg)(Y,Z) = B(X,Y )η(Z) +B(X,Z)η(Y )(8)

for all X,Y, Z ∈ Γ(TM). Consequently, ∇ is generally not a metric connection
with respect to g. However, the induced connection ∇∗ on S(TM) is a metric
connection. Denote by R, R and R∗ the curvature tensors of the connection
∇ on M , and the induced linear connections ∇ and ∇∗ on M and S(TM),
respectively. Using the Gauss-Weingarten formulae, we obtain the following
Gauss-Codazzi equations for M and S(TM) (see details in [11,12]).

R(X,Y )Z = R(X,Y )Z +B(X,Z)ANY −B(Y, Z)ANX + {(∇XB)(Y,Z)

− (∇YB)(X,Z) + τ(X)B(Y,Z)− τ(Y )B(X,Z)}N,(9)

R(X,Y )PZ = R∗(X,Y )PZ + C(X,PZ)A∗EY − C(Y, PZ)A∗EX

+ {(∇XC)(Y, PZ)− (∇Y C)(X,PZ)− τ(X)C(Y, PZ)

+ τ(Y )C(X,PZ)}E,(10)

R(X,Y )E = −∇∗XA∗EY +∇∗YA∗EX +A∗E [X,Y ]− τ(X)A∗EY + τ(Y )A∗EX

+ {C(Y,A∗EX)− C(X,A∗EY )− 2dτ(X,Y )}E,(11)

R(X,Y )N = −∇XANY +∇YANX +AN [X,Y ] + τ(X)ANY

− τ(Y )ANX + {B(Y,ANX)−B(X,ANY )− 2dτ(X,Y )}N,(12)

where 2dτ(X,Y ) = X(τ(Y ))− Y (τ(X))− τ([X,Y ]), for all X,Y, Z ∈ Γ(TM),
E ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)). A semi-Riemannian manifold (M, g) of
constant sectional curvature c is called a semi-Riemannian space form (see
[22, p. 80]) and denoted by M(c). The curvature tensor field R of M(c) is
given by

(13) R(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y }, ∀X,Y, Z ∈ Γ(TM).

A null hypersurface (M, g) of a semi-Riemannian manifold (M, g) is called;

(1) totally umbilic [11, p. 106] if there exists a smooth function ρ on a coor-
dinate neighborhood U ⊂ M such that A∗EX = ρPX, or equivalently,
B(X,PY ) = ρg(X,Y ). In case ρ = 0 on U ⊂ M , we say that M is
totally geodesic otherwise it is proper totally umbilic.

(2) screen totally umbilic [11, p. 109] if there exists a smooth function %
on a coordinate neighborhood U ⊂ M such that ANX = %PX, or
equivalently, C(X,PY ) = %g(X,Y ). In case % = 0 on U , we say that
M is screen totally geodesic otherwise it is proper screen totally umbilic.
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(3) screen conformal [12, p. 60] if there exists a non-vanishing smooth
function ψ on a coordinate neighborhood U such that ANX = ψA∗EX,
or equivalently, C(X,PY ) = ψB(X,Y ),

for any X,Y ∈ Γ(TM). For example, a null cone Λn+1
0 = {(x0, . . . , xn+1) ∈

Rn+2|x20 =
∑n+1
a=1 x

2
a, x0 6= 0} of Rn+2

0 is totally umbilic with ρ = −1 and it is
also screen totally umbilic with % = − 1

2x2
0
. Moreover, M is screen conformal

with ψ = 1
2x2

0
(see Propositions 5.4 and 5.5 of [11, pp. 111–113] for more

details). A null Monge hypersurface of Rn+2
q is screen conformal with ψ = 1

2

(see Proposition 6.3 of [11, p. 121]). More examples can be found in the books
[11,12].

3. Isoparametric null hypersurfaces

In the theory of non-degenerate submanifolds, each hypersurface has only
one type of second fundamental form with its respective shape operator. More-
over, the second fundamental form and its corresponding shape operator are
related by means of the induced metric tensor (see [22, Definition 18, p. 107]).
In this case, a hypersurface is called isoparametric if it has constant principal
curvatures (see, for instance, [7, Chapter 3]). For the degenerate case, each null
hypersurface has two types of second fundamental forms B and C, with their
respective shape operators AN and A∗E , see relations (3)–(6). We see, from (7),
that there are interrelations between the second fundamental forms, B and C,
and their respective shape operators. Due to this interrelatedness, we will de-
fine isoparametric null hypersurfaces M based on the principal curvatures from
the screen shape operator A∗E . First, note that the second fundamental form
B of a null hypersurface (M, g) is degenerate in addition to the degeneracy
of the induced metric tensor g. In fact, B(E, ·) = 0 and hence, A∗EE = 0.
Consequently, the only principle curvature of a null hypersurface along its nor-
mal bundle TM⊥ ⊂ TM is constant, and equal to zero. Thus, to investigate
constancy of principal curvatures (or isoparametricity) on a null hypersurface
reduces to investigating the constancy of remaining principal curvatures, with
respect to A∗E , along the screen distribution S(TM).

Based on the above, we define the concept of isoparametric null hypersur-
faces as follows;

Definition. A null hypersurface (M, g) immersed in a semi-Riemannian man-
ifold (M, g) is said to be isoparametric if the screen principal curvatures, with
respect to A∗E , are constant along S(TM).

Throughout this paper, we denote by d the number of distinct principal
curvatures of S(TM) with respect to A∗E . For instance, all totally geodesic n-
dimensional null hypersurfaces are isoparametric, in which A∗E has one principal
curvature zero with multiplicity n. Thus, d = 1. More explicitly, we have the
following example.
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Example 3.1. Let S4
1 be the unit pseudo-sphere of a Minkowski spacetime R5

1

given by −t2 + x2 + y2 + z2 + w2 = 1. Cut S4
1 by the hypersurface t − x = 0

and obtain a null surface M of S4
1 with RadTM spanned by a null vector

E = ∂t + ∂x. Take a screen distribution S(TM) spanned by the unit spacelike

vector fields W1 = (z2 +w2)−
1
2 (w∂z−z∂w) and W2 = (z2 +w2)−

1
2 (z∂z+w∂w).

A routine computation leads us to ∇W1E = 0 and ∇W2E = 0. Clearly, M is
totally geodesic and hence, isoparametric.

Other none trivial examples of isoparametric null hypersurfaces include the
following.

Example 3.2 (Null cone of Rn+2
1 ). Let Rn+2

1 be the space Rn+2 endowed with

a semi-Euclidean metric g(x, y) = −x0y0 +
∑n+1
a=1 xaya, (x =

∑n+1
A=0 x

A∂xA),

where ∂xA := ∂
∂xA

. Then, the null cone Λn+1
0 is given by the equation x20 =∑n+1

a=1 x
2
a, x0 6= 0. It is well-known (for example see the books [11, 12]) that

Λn+1
0 is a null hypersurface of Rn+2

1 , in which the radical distribution is spanned

by a global vector field E =
∑n+1
A=0 xA∂xA on Λn+1

0 . The transversal bundle

is spanned by a global section N given by N = 1
2x2

0
{−x0∂x0 +

∑n+1
a=1 xa∂xa}.

Moreover, E being the position vector field, one gets ∇XE = ∇XE = X, for
any X ∈ Γ(TΛn+1

0 ). Consequently, A∗EX + τ(X)E +X = 0. Noticing that the
operator A∗E is screen-valved, we infer from the last relation that

A∗EX = −PX, τ(X) = −g(X,N) = −λ(X)(14)

for any X ∈ Γ(TΛn+1
0 ). Next, any X ∈ Γ(S(TΛn+1

0 )) is expressed as X =∑n+1
a=1 X̃a∂xa, where {X̃1, . . . , X̃n+1} satisfy

∑n+1
a=1 xaX̃a = 0. From the first

relation of (14) we can clearly see that Λn+1
0 is isoparametric with d = 1.

Example 3.3. Let us consider a 6-dimensional space M = R6 equipped with a

Lorentzian metric g = −(dx0)2+(dx1)2+e2x
0{(dx2)2+(dx3)2}+e2x1{(dx4)2+

(dx5)2}, where (x0, . . . , x5) are the usual rectangular coordinates on M . The
non-zero Christoffel coefficients of the Levi-Civita connection of g are Γ2

02 =

Γ3
03 = Γ4

14 = Γ5
15 = 1, Γ0

22 = Γ0
33 = −e2x0

and Γ1
44 = Γ1

55 = e2x
1

. Consider
a hypersurface M of M given by M = {(x0, . . . , x5) ∈ R6 : x0 + x1 = 0}.
Then, M is a null hypersurface with N = − 1

2 (∂x0 + ∂x1) and E = ∂x0 − ∂x1.

Also, S(TM) = Span{e1, e2, e3, e4}, where e1 = e−2x
0

∂x2, e2 = e−2x
0

∂x3,

e3 = e−2x
1

∂x4 and e4 = e−2x
1

∂x5. Notice that [ei, ej ] = 0 for all i, j ∈
{1, 2, 3, 4}. Hence, S(TM) is integrable. By a straightforward calculation, we
have ∇e1E = e1, ∇e2E = e2, ∇e3E = −e3 and ∇e4E = −e4. It then follows
that A∗Ee1 = −e1, A∗Ee2 = −e2, A∗Ee3 = e3 and A∗Ee4 = e4. Thus, −1 and 1 are
the two distinct constant principal curvatures of A∗E with respect to S(TM),
with multiplicity 2 each. Clearly, M is isoparametric with d = 2.

Next, we characterize isoparametric null hypersurfaces with d = 1.
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Theorem 3.4. Any totally umbilic null hypersurface of a semi-Riemannian
manifold (M(c), g) such that the one form τ vanishes on S(TM) is isopara-
metric.

Proof. As M is totally umbilic in M(c), we have A∗EX = ρPX for all X ∈
Γ(TM). Clearly, if X ∈ Γ(S(TM)) is a principal vector field of A∗E , then ρ is
the corresponding principal curvature function. It is well-known [11, Theorem
5.2, p. 108] that the function ρ satisfies E(ρ) + ρτ(E) − ρ2 = 0 and PX(ρ) +
ρτ(PX) = 0, for any X ∈ Γ(TM) and E ∈ Γ(TM⊥). The result follows
from the second differential equation by considering the fact that τ vanishes
on S(TM). �

Corollary 3.5. Any totally umbilic isoparametric null hypersurface (M, g) of
a semi-Riemannian manifold (M(c), g) is either an open subset of a hyperplane
in M or τ vanishes on S(TM).

Next, let λ be a smooth principal curvature, with d > 1, and let Pλ denote
the corresponding principal distribution. Then, we have the following result.

Proposition 3.6. Let (M, g) be a null hypersurface of an indefinite space form
(M(c), g). Suppose that λ is a smooth principal curvature function of A∗E of
constant multiplicity m > 1 on S(TM). Then the principal distribution Pλ is
integrable. Moreover, λ is constant along each Pλ if and only if the 1-form τ
vanishes on Pλ. Furthermore, if M is screen conformal, such that τ vanishes on
S(TM), and the number of distinct principal curvatures of S(TM) is ≤ 2, then
the screen conformality factor ψ is constant along each principal distribution
Pλ.

Proof. In view of relations (11) and (13), we derive

−∇∗XA∗EY +∇∗YA∗EX +A∗E [X,Y ]− τ(X)A∗EY + τ(Y )A∗EX = 0(15)

for any X,Y ∈ Γ(S(TM)). Next, let us consider X and Y to be linearly
independent local vector fields in the principal distribution Pλ, then (15) gives

A∗E [X,Y ]− λ[X,Y ] = {X(λ) + λτ(X)}Y − {Y (λ) + λτ(Y )}X.(16)

As the right hand side of (16) belongs to Pλ, while the left side is in P⊥λ , both
sides are equal to zero. Thus, Pλ is integrable by the Frobenius theorem, since
[X,Y ] belongs to Pλ. Also, as X and Y are linearly independent, we deduce
that X(λ) + λτ(X) and Y (λ) + λτ(Y ) are both zero on Pλ. Each of these
relations implies that X(λ) = 0 if and only if τ(X) = 0 for all X ∈ Γ(Pλ).
Next, we prove the constancy of ψ along each principal distribution when M is
screen conformal. First, suppose that the number of distinct screen principal
curvatures d = 1. In this case, M is totally umbilic in M with ρ = λ, where
λ is the only principal curvature of S(TM) with respect to A∗E . As M is also
screen conformal, we have that S(TM) is totally umbilic with % = ψλ. Using
(12) and the fact that M is a space of constant curvature c, we have

{X(ψλ)− ψλτ(X)− cη(X)}g(PY, PZ)− {Y (ψλ)− ψλτ(Y )
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− cη(Y )}g(PX,PZ) = ψλ{B(PY, PZ)η(X)−B(PX,PZ)η(Y )}(17)

for all X,Y, Z ∈ Γ(TM). Setting X = PX, Y = PY and Z = PY in (17), we
deduce that PX(ψλ) − ψλτ(PX) = 0. As τ = 0 on S(TM), we have λ is a
constant, and thus either λ = 0 or PX(ψ) = 0. In the first case, that is; λ = 0,
we have that both S(TM) and M are totally geodesic. Hence, ψ is an arbitrary
constant function. Otherwise, the second case applies which shows that ψ is
constant along S(TM). We now turn to the case d = 2. From relations (12)
and (11), with τ = 0 on S(TM), we have

X(ψ)B(Y, PZ) = Y (ψ)B(X,PZ)(18)

for any X,Y ∈ Γ(S(TM)) and Z ∈ Γ(TM). Let us denote by λ and µ the two
distinct screen principal curvatures. Also, let Pλ and Pµ be their corresponding
principal distributions. Then Lemma 2.5.6 of [12, p. 79] suggests that Pλ ⊥ Pµ.
Setting X ∈ Γ(Pλ) and Y, PZ ∈ Γ(Pµ) in (18), we get

X(ψ)B(Y, PZ) = Y (ψ)B(X,PZ) = λY (ψ)g(X,PZ) = 0.

Consequently, µX(ψ) = 0. On the other hand, considering (17) with X,Y, Z ∈
Γ(Pλ), we have λX(ψ) = 0. If we consider X(ψ) 6= 0 in these equations, we
get µ = λ = 0, which makes M totally geodesic. This contradicts the fact that
d = 2. Thus, X(ψ) = 0 for any X ∈ Γ(Pλ), which completes the proof. �

Remark 3.7. Unlike the non-degenerate case in which if m > 1 then λ is
a constant along Pλ (see Chen [8, p. 102]), the null case is different as the
constancy depends on the 1-form τ .

In the case λ has constant multiplicity m > 1 on S(TM), the distribution
Pλ is a foliation on S(TM), which we call the principal foliation corresponding
to λ. Next, we prove that the leaves of a principal foliation are m-dimensional
totally umbilic submanifolds of M , and totally geodesic in S(TM). To that
end, a leaf Mλ of Pλ is said to be totally umbilic in M if for each x ∈ Mλ,
there is a real-valued linear function φ on TxM

⊥
λ such that the shape operator

Aν of Mλ satisfies Aν = φI, for every ν in TxM
⊥
λ . In case φ = 0, we say that

Mλ is totally geodesic. With the above in mind, we have the following result.

Theorem 3.8. Let (M, g) be a screen conformal or proper screen totally um-
bilic null hypersurface of a semi-Riemanian manifold (M(c), g). Suppose that
λ is a smooth principal curvature function of A∗E of constant multiplicity m > 1
on S(TM). Then, the number d of distinct principal curvatures λ is at most
2. The leaves of Pλ are either m-spheres or planes in M(c). Moreover, if τ
vanishes on S(TM) and there are two distinct screen principal curvatures, then
each leaf of Pλ is a hyperplane in S(TM).

Proof. The first part of this theorem, i.e., the number of distinct principal
curvatures d is at most 2, follows easily from the null Cartan-like formula
[4, Section 4] and [21, p. 215]. Next, we will show that a leaf Mλ is totally
umbilic in M , which shows (see Proposition 36 of O’Neill [22, p. 116]) Mλ is
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either an m-sphere or plane. First, we note that at each x ∈ Mλ, the normal
subspace TxM

⊥
λ of a leaf Mλ of the principal foliation Pλ in M is TxM

⊥
λ =

P⊥λ (x) ⊥ {RadTxM ⊕ tr(TxM)}, where P⊥λ (x) is the orthogonal complement

of Pλ in S(TxM). Let Aν denote the shape operator of Mλ in M , where ν
belongs to TxM

⊥
λ . If ν belongs to the hyperbolic bundle RadTxM ⊕ tr(TxM),

then we can write ν = aE + bN for some smooth non-vanishing functions a
and b. From this, we deduce that AνX = aA∗EX + bANX = aλX + bANX for
any X in Γ(Pλ). Thus, a leaf Mλ is totally umbilic if M is screen conformal
or screen totally umbilic. Let υ ∈ Γ(P⊥λ (x)) be a unit principle vector of A∗E ,
with corresponding principle curvature µ 6= λ. Let us extend υ to a vector field
Y ∈ Γ(P⊥λ ) on a neighborhood U of x. Then, there exists a unique vector field
Z ∈ Γ(P⊥λ ) such that g(Y, Z) = 0 (see [7]), and that

A∗EY = µY + Z(19)

for some smooth function µ on U . This is supported by the fact that P⊥λ is
invariant under A∗E , even though the eigenvalues of A∗E need not be smooth.
Let X be a vector field in Pλ on the neighborhood U . Since the vector field
Z = 0 at x, one can easily show that ∇∗XZ ∈ Γ(P⊥λ ) at x. Hence, by (11) and
(19), we derive

{X(µ) + µτ(X)}Y − {Y (λ) + λτ(Y )}X +∇∗XZ
= (A∗E − µI)∇∗XY − (A∗E − λI)∇∗YX,(20)

which give us

−Y (λ) + λτ(Y )

λ− µ
X,(21)

as the Pλ-component of∇∗XY . Furthermore, from relations (3) and (5), we have

∇XY = ∇∗XY +g(ANX,Y )E+g(A∗EX,Y )N . As M is either screen conformal

or proper screen totally umbilical in M , we see, by (19), that g(ANX,Y ) = 0
and g(A∗EX,Y ) = 0. Hence, the Pλ-component of ∇XY at x is equal to the
Pλ-component of ∇∗XY at x, which is given by (21). Since υ = Y at x, the

vector field −AυX is by definition equal to the Pλ-component of ∇XY , and so
we have

AυX =
Y (λ) + λτ(Y )

λ− µ
X.

That is, each leaf of Pλ is totally umbilic in M . Next, we prove the last part
of the theorem. As the number of screen principal curvatures is at most 2,
we have, by Lemma 2.5.6 of [12, p. 79], that Pλ ⊥ Pµ, where λ and µ are the
two distinct principal curvatures of S(TM). Since τ = 0 on S(TM), it is easy
to show, from (11), that ∇∗XY ∈ Γ(Pλ) for any X,Y ∈ Γ(Pλ). Consequently,
g(∇XY, Z) = 0 implying a leaf of Pλ is totally geodesic in S(TM). The same
is true for the leaves of Pµ. Therefore, each leaf of Pλ or Pµ is an hyperplane
in S(TM), which completes the proof. �
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Note that, with an m-sphere in a Lorentzian manifold Rn+2
1 , we mean a hy-

persphere in the Euclidean space Rm+1. As an example, we have the following.

Example 3.9. Let us consider the null cone of Example 3.2, in which both
Λn+1
0 and S(TΛn+1

0 ) are totally umbilic with ρ = −1 and % = − 1
2(x0)2

, re-

spectively (see [11, p. 112] for more details). From the Gauss equations of
Λn+1
0 and S(TΛn+1

0 ), we have ∇XY = ∇∗XY − g(X,Y )(1/2(x0)2E + N) for

any X,Y ∈ Γ(TMλ). Here, Mλ is a leaf of S(TΛn+1
0 ) and ∇∗ is the Levi-

Civita connection on Mλ. Thus, Mλ is totally umbilic in Rn+2
1 . As x0 6= 0,

we may assume that x0 > 0 (for x0 < 0, we proceed in the same way) and
consider in the normal bundle TM⊥λ , the vector fields v1 = 1/2x0E+x0N and
v2 = −1/2x0E + x0N . Observe that {v1, v2} is an orthonormal basis, with
v1 and v2 spacelike and timelike vector fields, respectively. By a simple calcu-
lation, using the expressions of E, N and the second relation in (14), we get
∇Xv2 = 1/2x0A∗EX − x0ANX = 0. Hence, Mλ is embedded in Rn+1. As Mλ

is totally umbilical but not totally geodesic immersed in the Euclidean space
Rn+1, by Proposition 5.6 of [11, p. 113] (or Proposition 36 of [22, p. 116]), we
see that Mλ lies on hypersphere in Rn+1. Hence, Mλ is an n-sphere in Rn+2

1 .

Let M be a null hypersurface of a semi-Riemannian manifold M . The mean
curvature of M is denoted by H, and given by H = 1

n tr|S(TM)B. Accordingly,
M is said to be of constant mean curvature if H is a constant function. In the
special case: H = 0, we say that M is minimal null hypersurface. For instance,
all totally geodesic null hypersurfaces are trivially minimal.

Theorem 3.10. Let (M, g) be a screen conformal null hypersurface of (M(c), g)
with compact leaves M∗. Suppose that M has constant mean curvature and two
principal curvatures λ and µ along its screen distribution, with multiplicities m
and n −m, respectively. If the 1-form τ vanishes on S(TM) and 1 < m < n,
then M is isoparametric. Moreover, each leaf M∗ of S(TM) is locally isometric
to the product of spheres Sm(r1)× Sn−m(r2), where Sm(r2) and Sn−m(r1) are
m and (n −m)-spheres in M , respectively. Furthermore, if M = Rn+2

1 , then
M∗ is locally isometric to a product of a spherical cylinder Sm(r)× Rn−m.

Proof. Consider an orthonormal frame X1, . . . , Xm, Xm+1, . . . , Xn, such that
1 ≤ i ≤ m and m+ 1 ≤ j ≤ n,

Xi ∈ Pλ = {X ∈ S(TM)p, p ∈M : A∗EX = λX}
and Xj ∈ Pµ = {X ∈ S(TM)p, p ∈M : A∗EX = µX}.

In view of Proposition 3.6, we have Xi(λ) = Xj(µ) = 0. Then, by definition of
mean curvature, we have

nH = tr|S(TM)B = mλ+ (n−m)µ.(22)

Differentiating (22) with respect to Ej and taking into account that H is con-
stant, we get mEj(λ) = −(n−m)Ej(µ) = 0. Thus, λ and µ are constant and
M is an isoparametric null hypersurface. In view of Theorem 3.8, the leaves
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Mλ and Mµ with respect to the principal distributions Pλ and Pµ, respec-

tively, are totally umbilic in M and totally geodesic in S(TM). Since S(TM)
is Riemannian, we have S(TM) = Pλ ⊥ Pµ, where the principal distributions
Pλ and Pµ are each parallel with respect to the connection on a leaf M∗ of
S(TM) (see [4, 12] for details). By the decomposition theorem of de Rham
[9], we have M∗ = Mλ ×Mµ. As the leaves of S(TM) are compact and each
Mλ and Mµ are metric spheres, we have that each leaf M∗ is isometric to
Sn−m(r1) × Sm(r2) ⊂ Rn−m+1 × Rm+1 (see [1] for more details). Next, when
M = Rn+2

1 , we know from [4] that one of the principal curvatures is zero.
Moreover, a simple calculation, using (9) and (10), reveals that the sectional
curvatures of the underlying leaves M0 and Mλ from the two principal distri-
butions P0 and Pλ are 0 and 2ψλ2, respectively. As ψ is constant along each
principal distribution (see Proposition 3.6), we conclude that both M0 and Mλ

are of constant sectional curvatures 0 and 2ψλ2, respectively. Hence, M∗ splits
as Sm(r)× Rn−m, which completes the proof. �

4. Geodesics and isoparametric null hypersurfaces

On a Riemannian manifold M̃ , a smooth curve α : I −→ M̃ is called a
circle of curvature κ if it is parametrized by its arc-length s and it satisfies
the following equation: ∇̃α′∇̃α′α′(s) = −κ2α′(s), where κ is constant and ∇̃α′

denotes the covariant differentiation along α′ with respect to the Riemannian
connection ∇̃ of M̃ . As ‖∇̃α′α′(s)‖ = k, this relation is equivalent to a geodesic
when κ = 0. Consequently, a geodesic is looked at as circle of zero curvature
(see [16] for more details). According to [16], if M̃ is embedded in M as an

n-dimensional submanifold, then M̃ is called an extrinsic sphere if and only if
every curve α on M̃ starting at a point x ∈ M̃ is developable upon a curve
lying in a certain Euclidian n-sphere in TpM . Let M be a null hypersurface

of M . As above, the concept of circles and extrinsic spheres can in the same
way be defined between a leaf of S(TM) and M . This follows easily since a
leaf is a non-degenerate codimension 2 submanifold of M . In general, this fails
for a null hypersurface as a curve β in M may be null, spacelike or timelike,
accordingly if g(β′, β′) = 0, g(β′, β′) > 0 or g(β′, β′) < 0, respectively. In fact,
let β be a null curve in M , and set E := β′. Then, it is easy to show, using
(3) and (6), that ∇E∇EE = ∇E∇EE = −(E(τ(E)) + τ(E)2)E, which renders
the definition of circles, as seen for non-degenerate submanifolds, in M for all
curves β null and void. Let (M, g) be a null hypersurface of M , and β be a
spacelike or timelike curve in M , we say that β is a degenerate circle in M if

∇β′∇β′β′ = −k2β′,(23)

where k is a constant along β′, and will be called the curvature of β. Accord-
ingly, if every spacelike or timelike curve in M is a degenerate circle, then M
will be called a degenerate extrinsic sphere in M .

As an example, we have the following.
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Example 4.1. Consider the null cone M of R3
1 given by

M = {(x1, x2, x3) ∈ R3
1 − {0} : x1 =

√
(x3)2 + (x2)2}.

A routine computation reveals that RadTM and tr(TM) are, respectively,
spanned by

E = x1∂x1 + x2∂x2 + x3∂x3,

and N = − 1

2(x1)2
(x1∂x1 − x2∂x2 − x3∂x3).

It follows that the corresponding screen distribution S(TM) is spanned by the
unit spacelike vector field

W =
X2√

(X2)2 + (X3)2
∂x2 +

X3√
(X2)2 + (X3)2

∂x3,

where X2 and X3 satisfy x2X2 + x3X3 = 0. By simple calculations, we get

∇XE = ∇XE = X, ∀X ∈ Γ(TM),(24)

due to the fact that E is the position vector field on M . Consequently, A∗EX+
τ(X)E + X = 0. Setting X = W in this relation, we get A∗EW = −W , i.e.,
M is totally umbilic in R3

1. Furthermore, τ(X) = g(X,N). It is easy to check
that ∇EX ∈ Γ(S(TM)), thus C(E,X) = 0 for all X ∈ Γ(TM). On the other
hand,

∇WN =
1

2(x1)2
W, ∀W ∈ Γ(S(TM)).(25)

From (25) we deduce that ANW = − 1
2(x1)2W . From (24) and (25), we derive

∇WW = − 1

2(x1)2
E −N, ∇WW = − 1

2(x1)2
E, ∇∗WW = 0.(26)

Applying ∇W to (26) and then using (24), we get

∇W∇WW = − 1

2(x1)2
W.(27)

Hence, the spacelike curve β for which β′ = W is a degenerate circle in M .
Consequently, M is a degenerate extrinsic sphere in R3

1, with curvature k =
1√
2x1

. Differentiating the first and last relations of (26), we get

∇W∇WW = − 1

(x1)2
W and ∇∗W∇∗WW = 0,(28)

respectively. Thus, β is a circle in R3
1, with curvature κ = 1

x1 . On the other
hand, from the second relation of (28), we can see that β is a geodesic circle
in S(TM). Notice from the expressions of k and κ that β looks like a geodesic
circle in both M and M at ∞.

We prove the following characterization result on isoparametric null hyper-
surfaces of M(c).
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Theorem 4.2. Let (M, g) be a screen conformal null hypersurface of (M(c =
0), g) and let M∗ be a leaf of its screen distribution S(TM). Then M is isopara-
metric in M(c) if and only if for each point x ∈M there exists an orthonormal
basis {Xi}mi=1 of the orthogonal complement of kerA∗E in S(TM)x such that all
geodesics of M∗ through x in the direction Xi lie on circles of nonzero curva-
ture in M(c). Moreover, in this case the null hypersurface M is a degenerate
extrinsic sphere in M(c).

Proof. Let M be a screen conformal isoparametric null hypersurface of M(c =
0). Theorem 3.8 suggests that there are at most two distinct principal curva-
tures λ and µ with multiplicities m and (n − m) (say), respectively. In case
λ = µ, then M is totally umbilic in M and the conclusion follows from Theorem
3.8. On the other hand, if λ 6= µ, then one of them is zero (say µ). Then, we
recall (see Proposition 3.6) the fact that each distribution Pt(x) : t ∈ {λ, 0} is
integrable and moreover, every leaf of Pt(x) is totally umbilic in M(c) and to-
tally geodesic in S(TM) (see Theorem 3.8), which implies that every geodesic
of such leaves is a circle in M(c). Furthermore, let βi = βi(s) : i ∈ {1, . . . ,m}
be geodesics of M∗ such that βi(0) = x and β′i(0) = Xi, where {1, . . . ,m} is
an orthonormal basis of (kerA∗E)⊥ in S(TM)x. As S(TM) is non-degenerate,
we have ∇∗XiXi = 0, and by a simple calculation, using the Gauss-Weingartein

equations of S(TM), we have ∇Xi∇XiXi = −ψkiA∗EXi = −ψk2iXi. Clearly,
this relation shows that each βi is a degenerate circle in M with curvature√
ψki. Hence, for each point x ∈ M , taking an orthonormal basis {Xi}mi=1

of the orthogonal complement of kerA∗E in S(TM)x in such a way that each
Xi : i ∈ {1, . . . ,m} is a principal curvature vector, we find that the vectors
{Xi}mi=1 satisfy the statement of Theorem 4.2.

Conversely, let M be a null hypersurface satisfying the condition that for
each point x ∈M there exists an orthonormal basis {Xi}mi=1 of the orthogonal
complement of kerA∗E in S(TM)x such that all geodesics of M through x in the
direction Xi : i ∈ {1, . . . ,m}, lie on circles of nonzero curvature in the ambient
space M(c). Consider the open dense subset U = {x ∈ M : the multiplicity
of each principal curvature of A∗E along each leaf M∗ in M(c) is constant on
some neighborhood Vx ⊆ U of x} of M . Fix neighborhood Vx. Notice that the
shape operator A∗E has constant rank on Vx. The curves βi satisfies

∇β′
i
∇β′

i
β′i = −κ2iβ′i, ∀ i ∈ {1, . . . ,m}(29)

for some positive constants κi. Let us assume, without loss of generality, that
κ1 ≤ κ2 ≤ . . . ≤ κm. By simple calculations we have

∇β′
i
∇β′

i
β′i = −2ψB(β′i, β

′
i)A
∗
Eβ
′
i + β′i(ψB(β′i, β

′
i))E + β′i(B(β′i, β

′
i))N.(30)

From (29) and (30), we get

B(β′i, β
′
i)A
∗
Eβ
′
i =

κ2i
2ψ

β′i, β′i(B(β′i, β
′
i)) = 0, β′i(ψ) = 0,(31)
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so that at s = 0, the first relation of (31) reduces to A∗EXi = λiXi or A∗EXi =
−λiXi, where λi := κi√

2ψ
. Then, the last two relations of (31) reads as Xi(λi) =

0 and Xi(ψ) = 0, respectively. Consequently, at each x ∈M , the tangent space
TxM has the following decomposition TxM = TxM

⊥ ⊥ P0(x) ⊥ Pλi1 (x) or

TxM = TxM
⊥ ⊥ P0(x) ⊥ P−λi1 (x) where 0 and λi1 are the two distinct λi’s

as per Theorem 3.8 and that 0 < λi1 . Hence, both 0 and λi1 are differentiable
on Vx. Next, we shall show the constancy of λi1 , which suffices to check the
case A∗EXi1 = λi1Xi1 for all i ∈ {1, . . . ,m}. By the method of [12, Lemma
2.5.10], we have (dλi1 +λi1τ −λ2i1η)|Pλi1 (x) = 0. As τ = 0 on S(TM)x, we get

dλi1 = 0 on S(TM)x, which completes the proof. �

As a consequence of Theorem 4.2, we have the following.

Corollary 4.3. Let (M(c̃), g) be a screen conformal null hypersurface of M(c)
and let M∗ be a leaf of its screen distribution S(TM). Then M is isoparametric
in M(c) with non-zero screen principal curvatures if and only if for each point
x ∈M there exists an orthonormal basis {Xi} : i ∈ {1, . . . ,m} of the orthogonal
complement of kerA∗E in S(TM)x such that all geodesics of M∗ through x in

the direction Xi lie on circles of nonzero curvature in M(c). Moreover, the null
hypersurface M is a degenerate extrinsic sphere in M(c).

5. Quasi isoparametric null hypersurfaces

We have seen that a null hypersurface is endowed with two shape opera-
tors A∗E and AN . We have, so far, used the principal curvatures from A∗E to
characterize isoparametric null hypersurfaces, since A∗E is a symmetric oper-
ator and therefore, diagonalizable. On the other hand, the operator AN is
generally non-symmetric and therefore non-diagonalizable. However, if suit-
able geometric conditions are imposed on M , AN can be made symmetric on
M . For instance, when M is screen integrable null hypersurface, one can easily
show that AN is symmetric (see details in [12, Theorem 2.2.6, p. 55]). Other
assumed geometric conditions are screen conformality, in which AN = ψA∗E for
some non-vanishing smooth function ψ on a neighborhood U ⊂ M , and par-
allel screen distribution, which all make AN a symmetric operator on M . In
this section, we assume that AN is symmetric. We will assume, further, that
ANE = 0, i.e., E is a principal vector field of AN with corresponding principal
curvature 0. This is motivated by the fact that the screen second fundamental
form C is degenerate and rankAN ≤ n. In that line, we have the following
definition.

Definition. A null hypersurface (M, g) of a semi-Riemannian space form M(c)
is called quasi isoparametric if all the principal curvatures of AN are constant
along S(TM).
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As Example; Any screen totally geodesic null hypersurface is quasi isopara-
metric with one screen principal curvature 0. A null cone of Example 3.2 is
quasi isoparametric with one screen principal curvature −1/2x20.

Let M be a screen integrable quasi isoparametric null hypersurface, with two
distinct screen principal curvatures λ̃ and µ̃ with multiplicities m and (n−m),
respectively. Denote by Pλ̃ and Pµ̃, the corresponding principle distributions.

It is easy to show, from (12) and the fact that M is a space of constant curvature
c, that both Pλ̃ and Pµ̃ are integrable distributions. Moreover, each principle

curvature λ̃, µ̃ is constant along its corresponding principle distribution if and
only if τ vanishes on S(TM). Following the method of [12, Lemma 2.5.6], one
can show easily that Pλ̃ ⊥g Pµ̃. We will prove a classification result on quasi

isoparametric null hypersurfaces of M(c = 0).

Lemma 5.1. On a screen integrable null hypersurface (M, g) of (M(c), g),

with two distinct principal curvatures λ̃ and µ̃ with respect to AN , such that τ
vanishes on S(TM), we have

(1) Pλ̃ ⊥B Pµ̃;

(2) g((∇ZAN )X,Y ) = (λ̃ − µ̃)g(∇ZX,Y ), for all X ∈ Γ(Pλ̃), Y ∈ Γ(Pµ̃)
and Z ∈ Γ(S(TM));

(3) ∇XY ∈ Γ(Pλ̃ ⊥ TM⊥), for all X,Y ∈ Γ(Pλ̃), on a quasi isoparametric
null hypersurface M ;

(4) ∇XY ⊥ Pλ̃, for all X ∈ Γ(Pλ̃) and Y ∈ Γ(Pµ̃), on a quasi isoparamet-
ric null hypersurface M .

Proof. Since M is a space of constant curvature c, we have R(X,Y )N = 0 for
any X,Y ∈ Γ(S(TM)). Consequently, (12) yields

B(Y,ANX) = B(X,ANY ) and (∇XAN )Y = (∇YAN )X(32)

for any X,Y ∈ Γ(S(TM)). Setting X ∈ Γ(Pλ̃) and Y ∈ Γ(Pµ̃) in the first

relation in (32), and using the symmetry of B, we obtain (λ̃− µ̃)B(X,Y ) = 0.

As λ̃ 6= µ̃, we see that B(X,Y ) = 0, i.e., Pλ̃ ⊥B Pµ̃, which proves (1). To prove
(2), we first note that (∇ZAN )X = ∇ZANX − AN∇ZX, for any X ∈ Γ(Pλ̃)
and Z ∈ Γ(S(TM)). Thus, since ANE = 0, we have g((∇ZAN )X,Y ) =

(λ̃− µ̃)g(∇ZX,Y ) +Z(λ̃)g(X,Y ) for any Y ∈ Γ(Pµ̃). As Pλ̃ ⊥g, Pµ̃, we obtain
(2). Next, we prove (3). From the second relation of (32), we notice that
g((∇XAN )Z, Y ) = g((∇ZAN )X,Y ) for any X,Y ∈ Γ(Pλ̃) and Z ∈ Γ(Pµ̃).

Thus, by part (2), this relation reduces to (µ̃−λ̃)g(∇XZ, Y )−Z(λ̃)g(X,Y ) = 0.

As M is quasi isoparametric with λ̃ 6= µ̃, this last relation gives g(∇XZ, Y ) =
0, which implies that g(∇∗XY,Z) = 0, in which we have used (5). Hence,
∇∗XY ∈ Γ(Pλ̃), and by considering (5), we obtain part (3). For part (4), we
have already seen that g(∇XZ, Y ) = 0 for any X,Y ∈ Γ(Pλ̃) and Z ∈ Γ(Pµ̃),
which completes the proof. �

Next, with the aid of Lemma 5.1, we prove a Cartan-like identity on a quasi
isoparametric null hypersurface, which we later use in our classification result.
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Lemma 5.2. Let (M, g) be a screen integrable quasi isoparametric null hyper-
surface of (M(c), g) such that τ vanishes on S(TM). Let X be a unit principal

vector at a point x ∈ M and λ̃ the associated principal curvature. For any
orthonormal basis {Xi}ni=1 satisfying ANXi = µ̃iXi, we have∑

µ̃i 6=λ̃

c+ λ̃B(Xi, Xi) + µ̃iB(X,X)

λ̃− µ̃i
= 0.

Proof. Observe that when ANE = 0 then ∇AN is symmetric on S(TM). In
fact, using (8) we see that g(∇XANY,Z) = Xg(ANY,Z) − g(ANY,∇XZ),
for any X,Y, Z ∈ Γ(S(TM)). By virtue of (5), we derive g((∇XAN )Y, Z) =
g(∇XANY,Z) − g(∇XY,ANZ). Applying the two relations above, one gets
g((∇XAN )Y,Z) = g(Y, (∇XAN )Z) for any X,Y, Z ∈ Γ(S(TM)). That is,
∇AN is symmetric on S(TM).

As per the lemma, let Y be a second unit principal vector with corresponding
principal curvature µ̃ 6= λ̃. Since S(TM) is integrable and τ = 0 on S(TM),
we see, from (12), that

g((∇[X,Y ]AN )X,Y ) = g([X,Y ], (∇XAN )Y ) = (λ̃− µ̃)g(∇XY,∇YX).(33)

Since M is a space of constant curvature c and that τ = 0 on S(TM), relation
(12) reduces to

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y } −B(X,Z)ANY

+B(Y,Z)ANX, ∀X,Y, Z ∈ Γ(S(TM)).(34)

Setting X ∈ Γ(Pλ̃), Y ∈ Γ(Pµ̃) and Z = Y in (34) and using (1) of Lemma 5.1,
we have

g(R(X,Y )Y,X) = c+ λ̃B(Y, Y ).(35)

Using (4) of Lemma 5.1 we see that g(∇XY,X) = 0. In view of this relation
and (8), we derive

g(∇Y∇XY,X) = −(∇Xg)(∇Y Y,X)− g(∇Y Y,∇XX)

= −B(X,X)η(∇Y Y )− g(∇Y Y,∇XX).(36)

By part (3) of Lemma 5.1, we have g(∇Y Y,∇XX) = 0, and by direct calcu-
lations, using (5), we have η(∇Y Y ) = C(Y, Y ) = g(ANY, Y ) = µ̃. Thus, (36)
reduces to

g(∇Y∇XY,X) = µ̃B(X,X).(37)

Following a similar calculation, using part (4) of Lemma 5.1, (8), part (1) of
Lemma 5.1, we derive

g(∇Y∇XY,X) = −g(∇XY,∇YX).(38)
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In view of the definition of the curvature tensor R, part (2) of Lemma 5.1, (37),
(38) and (33), we see that

g(R(X,Y )Y,X) = −µ̃B(X,X) + 2g(∇XY,∇YX).(39)

Then, from (36) and (39), we have

2g(∇XY,∇YX) = c+ λ̃B(Y, Y ) + µ̃B(X,X).(40)

On the other hand, let Z be unit principal vector with corresponding principal
curvature ν̃ not equal to λ̃ or µ̃, we have g((∇ZAN )X,Y ) = (µ̃− ν̃)g(Z,∇XY )

and inter-changing X and Y we get g((∇ZAN )X,Y ) = (λ̃ − ν̃)g(Z,∇YX).
From these two relations, we deduce that

(λ̃− ν̃)(µ̃− ν̃)g(∇XY, Z)g(Z,∇YX) = g((∇ZAN )X,Y )2.(41)

Expressing the term g(∇XY,∇YX) in the principal basis {Xi}ni=1, we see that

g(∇XY,∇YX) =
∑

µ̃i 6=λ̃,µ̃

g(∇XY,Xi)g(Xi,∇YX).(42)

Thus, from (40), (41) and (42), we have

2
∑

µ̃i 6=λ̃,µ̃

g((∇XiAN )X,Y )2

(λ̃− µ̃i)(µ̃− µ̃i)
= c+ λ̃B(Y, Y ) + µ̃B(X,X).(43)

Observe that, for any j with µ̃j 6= λ̃, we have by setting Y = Xj in (43) and

dividing by (λ̃− µ̃j),

c+ λ̃B(Xj , Xj) + µ̃jB(X,X)

(λ̃− µ̃j)
= 2

∑
µ̃i 6=λ̃,µ̃j

g((∇XiAN )X,Y )2

(λ̃− µ̃i)(µ̃− µ̃i)(λ̃− µ̃j)
.(44)

Finally, by summing (44) over all j for which µ̃j 6= λ̃ and observing that the
resultant sum on the right is 0, since it is skew-symmetric in {i, j}, we obtain
the lemma. �

Using the above lemmas, we prove the following result on quasi isoparametric
null hypersurfaces.

Theorem 5.3. Let (M, g) be a screen integrable quasi isoparametric null hy-
persurface of M(c = 0), with two distinct screen principal curvatures. If M
is totally umbilical null hypersurface, then it is either an open subset of a hy-
perplane in M or its screen distribution is isometric to a Riemannian product
Mλ̃ ×M−λ̃, where Mλ̃ and Mµ̃ are leaves of S(TM) of constant curvatures

2ρλ̃ and −2ρλ̃, respectively. Moreover, if M is screen conformal then S(TM)

is isometric to Mλ̃ × R, where Mλ̃ is a space constant curvature 2ψλ̃2 and R
is an Euclidean space.
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Proof. Let the two distinct principle curvatures be λ̃ and µ̃, with multiplicities
m and (n−m) respectively. Then, by Lemma 5.2, we have c+ λ̃B(Xj , Xj) +
µ̃B(Xi, Xi) = 0, where 1 ≤ i ≤ m and (m + 1) ≤ j ≤ n. If M is umbilic and

c = 0, this relation gives ρ(λ̃+ µ̃) = 0. Thus, either ρ = 0 in which case M is
totally geodesic in M , hence showing that M is an open subset of a hyperplane
or λ̃ = −µ̃. In the second case, S(TM) splits through two leaves Mλ̃ and M−λ̃
with dimension m each. It is easy to show, following the method of Theorem
3.8, that the two leaves are each totally umbilic in M and totally geodesic in
S(TM) (see part (3) of Lemma 5.1). Consequently, they are m-spheres in M
and m-planes in S(TM). By a simple calculation, using (9) and (10), we see

that the sectional curvatures of Mλ̃ and M−λ̃ are 2ρλ̃ and −2ρλ̃, respectively.
Observe that both sectional curvatures are constant along each leaf, since M
is totally umbilic and τ = 0 on S(TM). In fact, as M is umbilic, we have
PX(ρ) + ρτ(PX) = 0 (see [11, Theorem 5.2]). That is, ρ is a constant on
S(TM). On the other hand, if M is screen conformal then B = 1

ψC. From

Lemma 5.2, we have c + 2
ψ λ̃µ̃ = 0. As c = 0, we see that one of the two

principal curvatures is 0. Let λ̃ be the non-zero principal curvature. As before,
the sectional curvature of Mλ̃ is 2ψλ̃2 and that of M0 is 0, hence the proof. �
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