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COHOMOLOGY RING OF THE TENSOR PRODUCT OF
POISSON ALGEBRAS

CAN ZHU

ABSTRACT. In this paper, we study the Poisson cohomology ring of the
tensor product of Poisson algebras. Explicitly, it is proved that the Pois-
son cohomology ring of tensor product of two Poisson algebras is isomor-
phic to the tensor product of the respective Poisson cohomology ring of
these two Poisson algebras as Gerstenhaber algebras.

1. Introduction

Given a Poisson algebra, its Poisson cohomology, as introduced by Lich-
nerowicz in [12], provides important information about the Poisson structure.
The Poisson cohomology HP*(R) of a Poisson algebra R equipped with the
wedge product and the Schouten bracket is a Gerstenhaber algebra [10]. It
plays a crucial role in the study of deformations of the Poisson structure, just
as the Hochschild cohomology ring for the deformation theory of associative
algebras [5].

The tensor product of Poisson structure appeared in Poisson Hopf algebras
[3]. The tensor product of Poisson structure makes the category Poi(k), the
category of Poisson algebras over k, to be a tensor category [2]. Cherkashin
researched the cohomologies, deformations and homotopies of tensor product of
Poisson algebras in [1]. In this present paper, we study the Poisson cohomology
ring of the tensor product of Poisson algebras. Let (R, mr) and (T, mr) be two
Poisson algebras over k. Then there is a Poisson bracket 7, called the product
Poisson bracket, on R ® T by

m(a®b,c®d) :=7g(a,c) ®bd+ ac @ wr(b,d)

for all a,¢c € R and b,d € T. The Poisson algebra (R ® T,) is called the
Poisson tensor product of R and T. Our main result is the following (Theorem
3.3):
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Theorem. Let R and T be two Poisson algebras. There is an isomorphism of
Gerstenhaber algebras

HP*(R ® T) = HP*(R) ® HP*(T).

Note that the tensor product of two Gerstenhaber algebras in the above
theorem is defined by Le and Zhou in [11]. They also proved that, given two
associative algebras A and B over a field k, at least one of which is finite
dimensional, the Hochschild cohomology of the tensor product algebra A ®y B
is isomorphic to the tensor product of the respective Hochschild cohomologies
of A and of B, as Gerstenhaber algebras. Hence, our result is a generalization
of this to Poisson framework.

The paper is organized as follows. In Section 2, we recall some preliminary
definitions and results mainly on Poisson algebra and cohomology ring, Ger-
stenhaber algebra, tensor product of Poisson algebras, etc.. The main result is
proved in Section 3. Throughout, k is a field and all algebras are k-algebras
unless specialized and unadorned ® means ®.

2. Preliminaries

In this section, we recall some definitions and results which is essential for
our purpose.

2.1. Poisson algebra and cohomology

Definition. A commutative k-algebra R equipped with a bilinear map {—, —} :
R x R — R is called a Poisson algebra if
(1) (R,{—,—1}) is a Lie algebra;
(2) {—,—} is a derivation in each argument with respect to multiplication
of R.

Usually, the Poisson bracket is denoted by w. Then, the Poisson algebra
is denoted by (R, w), or (R,{—,—}). Next, we recall the notion of Poisson
cohomology. Denote by X¥(R) the space of all skew-symmetric k-linear maps
R®F — R that are derivations in each arguments. Here, a map f : RF —
R is called skew-symmetric if f(a1,...,ar) = sgn(o)f(agy,---,a0,) for any
permutation o € Si, where sgn(o) denotes its sign and o; means o (7). Then
there is a cochain complex (X*(R),d%) ([7,12]), where 6% : X*(R) — X*1(R)
is defined by

5§(P)(y03y17“'5yk) = Z (71)i{yi7p(y07y17'"7371'3"'3@/16)}
0<i<k

+ Z (_1)i+jP({yi7yj}7y07y17‘"7@7"'72}}7"'71}’6)
0<i<j<k
for all P € X¥(R). Tt is not hard to check that 6% (P) belongs to X**!(R) and

that 65t16% = 0. The k-th cohomology of this complex is denoted by HP*(R)
and is called the k-th Poisson cohomology of the Poisson algebra R.
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Recall that Q! (R) is the module of Kihler differentials of R by definition the
R-module and for each p € N, the Kéhler p-forms is the R-module QP(R) :=
AP QY(R), where A is the wedge product over R; for p = 0, Q°(R) = R. As
an R-module, QP(R) is generated by the elements of the form dai A --- A dzxp,
where z1,...,2, € R. There is a natural isomorphism of R-modules

(1) X*(R) = Homp(Q"(R), R),

which is given by P+ P, where P(zdxy A --- A dxy) := xP(xy, ..., 23) for all
P e X*(R) and z,x1,...,71 € R.

2.2. Shuffles

As a matter of convenience, we recall the notion of a shuffle and make some
more preliminary on it. For p,¢ € N and ¥ = {i1,42,...,9p44} & subset of N
with 41 <i9 < -+ <iptq, a permutation o on ¥ is called a (p, ¢)-shuffle on X
ifo(in) < - < o(ip) and o(ipt1) < -+ < 0(iptq). The set of all (p, ¢)-shuflle
is denoted by qu. Unless specialized, a (p, q)-shuffle is defined on the set
{1,2,...,p+ q}. The set of all (p, g)-shuffle is just denoted by S, , briefly.

Let Ay ={2,3,4,...,i+ j}. Then, there is a map

. QA Ay o
X590 USi,j—l — S
T =T

where 7 is defined as follows; if 7 € S2Y ., then

i—1,57

_ 1, =1,
7(l) = S
7(1), 1€{2,3,...;i+j}
ifre SijI, then
T(14+1), 1€{1,2,...,i},
(1) = { 1, l=i+1,

7(1), lefi+2,...,i+j}.
Proposition 2.1. Keep the notation as above. The map x
(2) X SzA—le U Sfjl—l — Sij

is a bijection. Further,

_ sgn(T), TE S?j -
sgn(T) = ; All’J
(=1)'sgn(r), 7€/} ;.

Proof. Note that for an (4, j)-shuffle v on the set {1,2,...,i+j}, we have either
v(l)=1lorv(i+1)=1. O
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For i, j, k,l € N, we define an (i, j, k, l)-shuffle by a permutation o on the set
{1,2,...,i+ j+ k+ 1}, such that
o(1) <o(2) <--- <oli),
(i+1) <o(i+2) < <o(i+]),
oli+j+1)<o(i+j+2)<---<o(i+j+k) and
oli+j+k+)<o(i+j+k+2)<---<o(i+j+k+1).

Q

The set of all (4, j, k,1)-shuffle is denoted by S; j 1.
For each (i + j,k + )-shuffle o, consider the set

So={(r.n) | re st nesi},

where Ay = {0(1),0(2),...,0(i+j)} and A3 = {o(i+j+1),...,0(i+j+k+1)}
For a given (i+7, k+ l) shufﬂe o and a pair (1,1) € Sy, deﬁne a permutation
d by

(3)

5(n) = To(n), 1<n<i+y;
" no(n), i+ji+1<n<i4j+k+1

Then 6 is an (4, j, k, [)-shuffle. Thus, we get amap o: | So — Si ki by
TESitj kti
sending the triple (o, 7,7) to ¢ which defined above.

Proposition 2.2. Keeping the notation as above, the map o is a bijection and
sgn(6) = sgu(7) sgn (o) sgn(n).

Proof. The proof is direct. O

For a (p, ¢)-shuffle o, consider the permutation ¢’ by

. o(i+p), 1<i<g;
o'(i) := ) )
o(i—q), ¢q+1<i<q+p.

Then, ¢’ is a (g, p)-shuffle. Thus, we get a map ¥ : S, 4 — Sgp,0 +— o',

Proposition 2.3. Keeping the notation as above, the map ¥ is a bijection and
sgn(o) = (—1)P?sgn(o’).

Proof. The proof is direct. O
Remark 2.4. The similar results hold for (i, j, k, [)-shuffles. For example, there

is a bijection between S; jx; and S ;,; by send 7 to 7/ in a similar way.
Moreover, sgn(7) = (—1)k@+)+i son(77).
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For an (4, j, k—1,1)-shuffle o and each integer p with i+1 < p < i+ j, define
an integer q by
i+ 7, ifo(p) <o(i+j+1);
t, ifo(t) <o(p) <o(t+1)
forsomet withi+j+1<t<j+4+j+k—1;
i+j+k-1, fo(i+j+k—1)<o(p).

Then, define a permutation 7 by

a(l), if1<i<p-1,;
1 ifp<i<qg-—1;
()= {00 Hpsisa—1
J(p)a lfl:(L
o(l), ifg+1<i<i+j+k+1.

It is easy to see that 7 is an (4,5 — 1, k, [)-shuffle. That is, we get a map
c:{i+1,i4+2,.. i+t xSijr—1g—={t+7,.. i+ j+E—1} XS 1k
(po) = (q7)

Proposition 2.5. Keeping the notation as above, the map < is a bijection:
¢:{i+1,i42, . it xS je—1 = {i+g i+, iR =1 XS 1 ke
And, sgn(r) = (=1)PT 1 sgn(o) if s(p,0) = (¢, 7).

Proof. Tt is easy to see that these two sets have same cardinality and that this
map is injective. (I
2.3. Gerstenhaber algebra

Definition. A Gerstenhaber algebra is a Z-graded k-vector space H® :=

& H™ equipped with two linear maps
nez

A:H™x H" — H™™ (a,b) — a A b
and
[—, =] H™ x H" = H™"™! (a,b) — [a, ]
such that
(1) (H*,A) is a graded commutative algebra, i.e., aAb = (—=1)""bAa,Va €
H™be H™
(2) (H*,[—,—]) is a graded Lie algebra of degree —1, i.e.,
[a,b] = —(=1)™=D=V[p o) Va € H™, b e H"
and
(=1)m=DU=D1[g, b], ¢] + cyclic permutation of a,b and ¢ =0
for alla € H™,b € H",c € H';
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(3) two operations satisfy the compatible condition:
[aAD,c]=anb,d+(~1)™ DA a,d,Ya e H",be H",c € H.

Definition. Let (H®,Ag,[—,—]|g) and (K*,Ak,[—, —]x) be two Gersten-
haber algebras over k. Then H is said to isomorphic to K as Gerstenhaber
algebras if there is a k-linear bijection map ¢ : H — K of degree 0 with the
following properties

(4) O(a A b) = ®(a) A P(b),
() O([a, b)) = [@(a), P(b)] k-
Let R be a Poisson algebra and X*(R) := €, X*(R). The wedge product A
on X*(R):
(PAQ) a1y Gmtn)

=Y sgn(0)Plagay,- - ao(m))Q(@o(m+1)s - - - Ao(mn))
0ESm 0

and the Schouten bracket on X*(R)
[P,Qls =PoQ— (-1)"V"DQoP,
where the product o is defined by:
(Po@Q)(a1,...,amin—1)
= Z sgn(0)P(Q(agys - - - @o(n)), 4g(nt1)s - - - > W0 (m+n—1))
0€Sn, m—1

for all P € X™(R) and Q € X"(R), make the triple (X*(R),A,[—, —]s) to
be a Gerstenhaber algebra. Further, both the wedge product and Schouten
bracket induce products in Poisson cohomology, which still denote by A and
[—, —]s. Moreover, the triple (HP*(R), A, [—, —]s) is a Gerstenhaber algebra
[10, Proposition 4.9].

2.4. Tensor product of Poisson algebras

Let (R,{—,—}) and (T,{—,—}) be two Poisson algebras. Then R® T is a
commutative associative algebra by

(a®b) - (c®d):=ac® bd.
Proposition 2.6 ([1,3,10]). There exists a unique Poisson bracket
{a®@b,c®d} :={a,c} ®bd+ ac® {b,d}

such that (RQT, -, {—, —}) is a Poisson algebra, making the canonical inclusions
R—>RT andT — R® T are Poisson algebra homomorphism.

The Poisson algebra (R® T, -,{—, —}) is called the Poisson tensor product
of R and T, while the Poisson bracket {—, —} is called the product Poisson
structure.
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3. The main result and its proof

Let R and T be two Poisson algebras. In this section, we firstly recall that the
tensor product of two Gerstenhaber algebras is still a Gerstenhaber algebra.
Then, we prove that HP*(R) ® HP*(T) and HP*(R ® T) are isomorphic as
Gerstenhaber algebras.

Proposition-Definition 3.1 ([11, Proposition-Definition 2.2]). Let (H®, Am,
[—,—]u) and (K*,Ak,[—,—]K) be two Gerstenhaber algebras over k. Then
there is a new Gerstenhaber algebra (L®, A, [—, —]) over k given as follows

(1) L™ := &4 j—nH' ® K7 as a k-vector space for each n € Z;
(2) (a@b)A(d @) := (=D Il(g Ay a') @ (b Ak b);
(3) la®b,d @] := (~1)I PO, o]y @ (b Ak V)

+ (—1)‘“|(|“/|+‘b/|_1)(a A a)®[b,b]k.

The Gerstenhaber algebra (L*, A, [—, —]) is called the tensor product of the two
Gerstenhaber algebras H®* and K*®, and denote it by H®* ® K*°.

In order to prove the main result of this section, we retrieve the relation
between the Kahler differentials of R® T and that of R and T. We rewrite the
following result here for convenience though it is standard.

Lemma 3.2. Let R and T be two commutative algebras. Then
QRYQQ(T) = Q" (RxT)

as complexes.

Proof. For each p, q, the map

e (apdar A --- Adap) @ (bodby A --- ANdbg) —

(a0 ®bo)d(ar @ L) A -+ ANd(ap @ L) Ad(1 @b1) A+ Ad(1®Dbg)
is well-defined and induces a morphism of R ® T-modules (still denoted it by
€),

(6) e: QPR)@QT) — QPTYRRT).
Moreover, it is bijective and a morphism of complexes. [l
Theorem 3.3. Let R and T be two Poisson algebras. There is an isomorphism
of Gerstenhaber algebras

HP*(R®T) = HP*(R) @ HP*(T).
Proof. The left hand side of the above isomorphism is computed by the complex

X*(R®T), while the right hand side is computed by the complex X*(R)®@X*(T).
We will take in three steps to prove that there is an isomorphism

(7) X(R)@XY(T) = X" (RoT)

as Gerstenhaber algebras
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Step 1: construct an isomorphism of complexes ® : X*(R) @ X*(T) — X*(R
Step 2: gr)(;ve that ® preserves the wedge product
D((fr®g1) A (fa®g2)) = 2(f1 @ 91) A B(f2 @ g2)
for all f; € X"'(R), f2 € X"2(R), g1 € X7'(T) and g2 € X%2(T);
Step 3: prove that ® preserves the Schouten product
O[f1 ® g1, fa ® gols = [P(f1 ® 1), P(f2 @ g2)]s-

Then by taking cohomology we get the desired conclusion.

Step 1: In [1], a morphism between the above complexes was constructed
in the following way. Note that X¥(R) = Homg(Q*(R), R) by equation (1) for
each k. For f € Homg(QP(R), R) and g € Homp(Q4(T),T'), define

®,, : Homgr(QP(R), R) ® Homr (QY(T),T) — Hompgr (P T (R T), R T)
by
Ppq(f @ g) i (d(ar @ b1)A -+ Nd(apig @ bpsq)) =
> s80(0)ao(pr1) - Ga(prg f(dagy A Adag)

0ESp.q
® bo(l) cee bo(p)g(dbg(p+1) VANRERAN dba(p_;,_q)).

Then ¢ := P, , Ppq is a morphism from the complex Hompg(Q2*(R), R) ®
Homr (Q*(T), ) to the complex Homper (*(R®T),RRT).
Conversely, we firstly construct

F : Homper (' (R®T), R® T) — P Homper (' (R) @ Q" /(T), R® T)
t=0

by F := Hompgr(e, R T). It is easy to see that F is an isomorphism. Recall
that it is known that if M and P are finite generated modules, then the map

G : Homy (M, N) ® Homp(P, Q) - Homagp(M @ P,N ® Q)
a®f —  Gaggs

where Goga(m®p) := a(m)® B(p) for each m € M, p € P, is an isomorphism.
Thus, we get an isomorphism

G : Homg(QP(R), R) ® Homr(QY(T),T) — Hompger(QP(R) @ QI(T), R T)
since both QP(R) and Q9(T) are finite generated for all p, gq. Define
U =G 'F:Homper(Q(R&T),R2T)

= EB Hompz(Q(R), R) ® Home (" 4(T), T).
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Therefore, ¥ is bijective and F® = G, i.e., Y& = id. What we have done can
be described as the following diagram:

v=G"'F

Homper(Q"(R®T),R®T) - @;_, Homg(Q'(R), R) @ Homp(Q"(T),T) .

X/

D Homper(Q(R) @ QY(T),R&T)

Henceforth, ® is an isomorphism of complexes.
Step 2: Next, we prove that the isomorphism ® preserves the wedge product

(8) P((fr®g) A (f2®g2)) = 2(f1 ®g1) A P(f2 ® g2)

for all f; € X*'(R), fo € X2(R), g1 € X7'(T) and go € X72(T'). To simplify the
notation, set I = i1 + 12, J = j1 + Jo, I’ = i1 + j1 and J' = i3 + ja.
Recall that

(f1®g) A(fa®g2) = (1) (fL A f2) @ (g1 A g2).
Hence, the left hand side of (8) is the map by sending (a; ®b1) ® -+ ® (ar+ 7 ®

b[+]) to

Z(—l)izjl SgN(0)ao(141) * ** Go(14+0) f1 A f2(G0(1) @ - -+ @ Ao (1))

D'ESI,J
(E1) ®bg(1)bo(1)91 N G2(bo(141) @ -+ @ bo(14.7))-

By the definition of the wedge product on X*(R),

fi A falagy @ -+ @ ao(ry)
= > seu(n)filar@) ®  ® ariy) faltri11) ® - ® ar(r)),

Tes?ﬁiz
where the set Ay = {0(1),0(2),...,0(I)}. Similarly,

91 N g2(bo(141) @ -+ @ bo(14.7))

= D sen(m)gi(byy ® - @ by(i,)) g2 (b 1) @ -+ @ by,

As
nesjlij

where the set A5 = {o(I +1),...,0(I +J)}. By Proposition 2.2,

(E1) = Z (=1)271 sgn(0)ap(141) * * Qo (14 f1 (A1) @ -+ ® ag(iy))
€Sy in,i1.52

J2(Ao(iy+1) @ @ ao(1)) @ be(1) - bo(n)
9) 91(bo(141) @+ @ b (145,))92(bo(14j14+1) @ -+ @ b (14.7))-
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For the right hand side of (8), ®(f1 ® g1) A ®(f2 ® g2) is the map sending
(a1 ®b1) @@ (ar+; @ bryy) to

Z sgn(o)®(f1 ® g1) ((%(1) ®be1)) @ -+ @ (ap(1y ® bg(p)))

UESI/J/
@ P(f2 ® g2) ((aa(1’+1) ® bo(1141)) @+ ® (A (1101 ® ba(I’JrJ’)))

= Z sgn(a)( Z SEN(T)ar(iy41) - - Gr (1) f1(Ar (1) @ -+ - @ Ar(sy))

UESI/’J/ TesiAﬁj
11,71

®br(1y by 91(br(i 41) ® - @ bT(If)))

®( > sen(n)an(iy 1) - Angr) f2(@n) @ -+ © aygy))
A7
12,52

® by(1)+ byiz) 92 (bniz+1) ® -+~ @ bn(J’)))

nes

= > sen(o)sgn(n)sen(r) (aT(nH) S (1) (in 41) " ()
O'ESI/‘J/

Ae Az
TES i M€,

filar) @+ 8 ari)falany © -+ © ayi)) ) @ (bray -+ brgan
(E2)

b1y = by(in) 91 (Or (i +1) ® - @ br(11))92(by(in 1) @ -+ ® bn(J/)))»
where the set Ag = {0(1),0(2),...,0(I")} and the set A; = {o(I'+1),...,0(I’
+J")}. By Proposition 2.2,

(10)  (B2)= Z Sgn(5)<a5(i1+l)"'aé(I')a6(1’+i2+1)"'a5(1’+J’)

5ESiy J1rinin
filasqy ® -+ ®asy)) folasryny ® - ® aé([’-i—iz)))
® (55(1) o bs(iy)bs(1r 1) bs(1r4in)
91(bs(i+1) @ - @ bs(11)) 92 (bs(1/ iy 41) @+ @ b5([’+J/)))'

Finally, interchanging .S; and S;, j, ,is,j» Dy using the argument in Re-

mark 2.4 we get that

1,12,J1,72

RHS of (10) = RHS of (9).
That is, two sides of (8) define the same map. Henceforth, ® preserves the

wedge product.
Step 3: We will prove that the isomorphism & preserves the Schouten

product
(11) Q[f1 ® g1, f2 ® go] = [®(f1 ® g1), P(f2 ® g2)]
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for all fi € X' (R), fo € X"2(R), g1 € X7 (T) and g2 € X72(T). Recall that

h@g, fa@g) = ()T D2[f, fl@ g Aga+ (—1)" VLA f2® (g1, 92)-
Hence, the left hand side of (11) is the map sending (a1 ®b1)® -+ ® (ar4 -1 ®
bryg-1) to
(1) V28([f1, fo] © g1 A g2) (a1 @ b1) @+ @ (arrg—1 @ brys—1))
+(=DTR(f A f2 @ [g1,92)) (a1 @b1) @+ @ (ar4-1 @ brys1)).
Since
O([f1, fal @ g1 AN g2)((a1 @ b1) @+ @ (ar4y-1 ®brig—1))
= Z Sg(0)ag (1) * * Ao (1+7—1)[f1, f2) (Ao(1) ® -+ @ ap(1-1))
cE€SI_1,1
®bo(1) +bo(1-1)91 A g2 (Do (1) ® -+ @ Do(14.7-1))
= Z sgn(o)ag(r) - %(I+J—1)( Z sgn(7) f1(f2(ar(1) @ - @ ar(iy))

A
o€ST 1,7 7.651281_171

® Ar(iy41) @+ @ Ar(r-1))
_ (,1)@171)(1'271) Z Sgn(n)fz(fl(anu) R ® an(il))

Ag
neS; Yiy_1

® piy+1) ® -+ @ an(171))) ® (bgu) o ba(r-1)

Z sgn(8)g1(bs(r) ® -+ @ bs(144,-1))92(bs(14j1) © -+ ® b5(1+J—1))>7

A0
6€511112

where the set Ag = {0(1),0(2),...,0(I — 1)}, the set Ag = {o(1),0(2),...,
o(I —1)} and the set Ayg = {o(I),...,0(I +J —1)}. By using Proposition
2.2,

O([f1, f2] @ g1 A g2)((a1 @ b1) @ -+ @ (ar4y-1 @ bryy—1))
= Z sgn(v) fi (f2(au(1) ® @ Ay(iy)) ® Ap(ingr1) @+ ® au(171))

VESiy i1 130
Ay(ry ** Qy(1+J—1) @ by(1y - by-1)
91(by(r) @+ @ by(145,-1))92(bu(1451) @ - @ by(r472-1))
- Z sgn(v)(—1)n D0 g, (filap() @ -+ @ ay(iy)) ® Ay(iy41)
VESi, ip 1,313
@+ @ Ay(1-1)) - (D) Gu(147—-1) D by(1) -+ bur—1)
G1(bu(r) @ -+ @ by(114,-1))92(bu(1441) @ - @ byr15-1))-

It is easy to see that the term

J1(f2(an) @ -+ @ Gu(iy)) @ Qu(ing1) @ -+ @ Ay(r-1)) - (1) -~ Qu(1+J-1)
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®by1y - bur—1) - 91(bur) @ - @ by(r45,-1))92(bu(14j1) ® -+ - @ by(1472-1))

is completely determined by the (ig,i1 — 1, j1, j2)-shuffle v, and we write it as
filfac- ) ) ®---g1(- -+ )ga(---) briefly. Similarly for the second term in
the last equation. Moreover,

(12) D[f1 ® g1, f2® g2) ((a1 @ b1) ® -+ @ (ag4y—1 @ bry-1))
= Z Kfi(falo) o) @ogi(-)ga(-+)

VESiy iy —1,31.02

_ Z Lfs(fi(---) )o@ gi(--)gal- )

VESiy ig—1,41 42

+ Z MG falo) oo @ gilga(---) )

VESiy ig,jo.i1—1

_ Z Nfi(--)fa- )@ galga(--+)---),
VESiyig,i1.d2—1
where the constants K=sgn(v)(—1)!" =17 L=sgn(v)(—1)F' ~Diztla-1ia=1)
M = sgn(v)(—=1)1' =1 and N = sgn(v)(—1)1(/' =D+0G1-D2-1)
Now, let us compute the right hand side of (11),
[@(f1®0g1),2(f2®92)]((a1 @ b1) @+ @ (ag47-1 @ brys-1))

= > sen(o)®(fHi® 91)<¢’(f2 ® 92) (1) @ bo(1)) @ -+ @ (ap(1) @ bo(sr))

O‘GSJ/)I/71
® (Ao (1141) @ bo(yr41)) @+ ® (Ag(rr15—1) ® ba(I'+J'—1)))

= Y sen(@) (=) VDo @ ) (B(f1 @ 91) (a0 (1) @ boy @+ @

UGSI/‘Jlil

(ag(ry ® bU(I’))) ® (Ao (141) ® bo(rr41)) @ -+ @ (Ag(r47—1) @ b(r([’+J’—l))>7

and denote it by U + V briefly.
Denote ®( f2 ®g2)((a0(1) Rby1)) @+ @ (Ag(y) @ bU(J/))) by ag ® by briefly,
that is,

(13) ag ® by = Z sgn(v) fa(ay (1) @ - -+ @ Ay (iy) ) A (in41) * * * Qu(7)

A1l
Vesi2,j2

@ by(1) bu(in)92(bu(is+1) @ - @ by(ry),

where the set 411 = {o(1),...,0(J")}.
Then,

O(f1®91) (‘b(f2 ® 92) ((ao(1) @ be(1) @ -+ @ (ae(1) @ by(sr)))®

(@o(7741) ® bo(gr41)) @+ @ (Ag(rr47-1) ® ba<1’+J’—1>))
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= ®(fi®g1) ((ao ®bo) @ (Ag(gr11) @ bo(grg1)) @ - -

® (Ao (1r40/-1) ®@ ba([’+J’—1)))

= > sen(m)filarq) @ © ar(iy))ariy41)

resiiz
(E3) ar(ry @ b1y -+ bri)91(br(i41) @ - ® br1ry),
where the set 415 = {0,0(J' +1),...,0(I' +J —1)}. By Proposition 2.1,
(£3) = Z sgn(n)f1(a0 @ ay(1) @ -+ ® Gy, —1))angiy) - Ay(r-1)
776511 11
@ bobp(y - - bn(il 191 (by (i) © -+ @ by(rr—1))
+ Z ) sgn(8) fi(asy ® -+ ® agiy))Q0as(i,+1) * ** As(1—1)
56521;‘1 1

(E4) ® bs(1) - bs(i)91(bo @ bs(iy+1) ® -+ - @ bs(1r—1)),

where the set A;3 = {o(J' 4+ 1),...,0(I' +J —1)}. Combining with (13), we
have
(E4) = Z sgn(n) sgn(v) f1 <f2 (av1) ® -+ @ Gy (iy)) Au(in+1) Q)
vesit
12,32
,,765?1131 J1
Bapa) @@ an(il—l))anm) T (rr-1) @ by buga)
92(bu(iat1) @ - @ by(a))by(r) - by(in -1 91 (bnir) © -+ ® by(r—1))

+ Z (—1)" sgn(8) sgn(v) f1(as) @ -+ ® as(y))

Al
VGSZ2 Ja

sesie
Ja(au(1) ® -+ @ @y (i) ) A (in+1) * * * A () A5 (i, +1)@s(1—1) D bs(1) = bs(iy)
g1 (bu(l) by 92 (bu(int1) @ - @ by(gry) @ bsiy41) @ -+ @ b5(1/—1))~
Now, by the construction (3) and Proposition 2.2,
U= Z sgn(7) f1 (f2 (ar(t) @+ @ Gr(iy)) Qr(in1)  * - Ar ()
TE€Siy 191101
®ar(4+1) @+ X GT(J’+7:1—1)>GT(J/+¢1) S Qe (J 4T —1)
@ br(1) + br(in) 92(Or(in 1) @ <+ @ br(11))br(gr41) - by iy 1)
G1(br(yr4iy) @ @ br(ypr—1))
+ > (=1)" sgn(7) fr(ar(y41) @ -+ @ Ar(sr44y))

TESig. o .in .11
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falar(y @+ @ ar(iy))Ar(iy+1) -+ Qr (1) Or (57 iy +1)
cr(grar—1) @ br(grpn) o br(rgiy)

9 (br(l) “br(in) 92 (Dr(in 1) @+ @ brry)

@ br(rris 1) @ B br(yar )

and denote the right hands of last equation by U; 4+ Us briefly.
By Proposition 2.3 and Remark 2.4,

Uy = > (BT DRt een(o) fy (fz (@0(1) ® ++ ® ag(ir))
0E€Siy i1 —1,51.2
Qg (I451) " Qo(I+T—1) @ Og(iy+1) @+ & ag(1—1))
Ao (1) * Go(I4j1—1) @ bo(1) = Do(in)bo(izt1) ** bo(1-1)
91(bo(ny ® -+ @ bg(145,-1))92(ba(14j1) ® -+ - ® bg(147-1))
= Z (_1)(i1—1)j2+j1j2 sgn(o) fi (f2 (aa(l) R-Q ag(i2))
0ESip,i1—1,51.42
R Up(ir+1) @+ & ao’([—l))aa(I) C Qo (I+41—1) o (I+41) " Qo(I+JT-1)
@ ba(1) **bo(in)bo(iz+1) b (1-1)91(bo(1) @+ @ bo(145,-1))
92(bo(1441) ® - @ bo(r7-1))
+ Yoo (F)OTIERE s (0) fo (ap(1) @ -+ © g (i)
€Sy i1 —1,51,02
bil (%(Hﬁ) o Oo(I4T—1) @ Oo(ip+1) ® - @ ao([—l))
Ao (1) " Oo(T4+j1—1) @ (1) "+ * Vo (iz) Vo (in+1) = o(1-1)
91(bo(r) @+ @ bo(11j,-1))92(bs(11j,) @+ @ bo(147-1))
= Z Kf(falo) o) ®@ogi(-)ga(- )

0ESip,i1—1,51.42

+ > > K f2(ao1) @+ ® ag(i5))

0E€Siy,i1—1,j1,40 I +51<q<I+J—1

h (aa(q) ® G (ipt1) @+ ® aa(171))

Ao(I) """ Co(I+51-1)Ao(I+j1) """ Ao(q) """ Ao (I+T-1)
® ba(l) s bg(1_1)91(ba(z) - ® ba(l+j1—1))
92(bo(14j1) @ -+ @ bo(147-1))

L Z Kfi(fa(- ) ) oo @egi(--)ga(- ) + Una.

0ESiy, iy —1,41 .42
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By a similar process,

Uy = Z Mf(--)fa( )@ grlga(--+) )
0ESiq,ig,g,d1—1
I 3 Y MA(te) @ ® o))

€Sy ig,jg,i1 —1 L1 +1<p<iitia
f2(%(i1+1) X aU(I))aU(IH) e Og(T4-1)

®bo(1)+ Oo(in)bo(in+1)  bo(p) "+ bo(r)
92(ba(I+1) ®-- & bg([+j2))gl (ba'(p) ® bo(14jat1) @

— Z Mfi(-- ol ) @ gi(ga(---) )

ESiy iz,z,01-1
+ > > (FD)ITYEMfi(ap0) @ ® (i)
€Sy ig, 11,49 11 +1<p<intiz

f2(Ao(iy+1) @ @ o(1))o(141) Ao (14+T-1)

®by(1) ** bo(in)bo(is+1) *  bo(p) **  bo(n)
91 (bo(p) ® bo(14+1) @+ @ by(1441))92(bo (141 +1) ®

ST MACIRE) @ gilgal) ) + U,

0ESiy ig.jn.d1—1

@ bo(r4-1))

@ bo(r40-1))

(1>

Similarly,

V= — Z Lis(fi(-) )@ gi(--)ga(- )

€S ig—1,51.42

-y Y. Lh(aeq)® @ agq,)

0ESiy ig—1,j1,40 1Sq<T+j1—1

f2 (“o(g) ® Go(iy41) @+ @ aa(H))
...... Gt Go(Tjs—1)o(T4g) - Ao(I4T—1)
® o)+ bo(1-1)91(bo(1) @ -+ @ by (145,-1))
92(bs (1451) © -+ @ by (147-1))
— Z N Vfalo ) @ galga(--) )

€Sy ig,j1.d2—1

Z Z Nfl(aa(l) D aa(i1))f2<aa(i1+1) Q- ® ag([))
0€Siy ig.j1.de—1 1Sp<ia
ao.(I+1) e aU(I+J—1) %] ba’(l) N bo’(p) e bU(il)bU(il-‘rl) e bo‘([)

91(bo(14+1) @+ @ by(14y))
gg(bg(p) (9 bo’(1+j2+1) Q- bJ(I+J71))
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& _ Z Lis(fi(-) )@ gi(--)ga(- -+ ) + Vi

0ESiy ip—1,1.42
— Z Nf(-Vfalo ) @ galga(--) -+ ) + Vag.
0ESiy iz, 1,421
To prove the equation (11), it remains to prove that
Uig+ Uz +Vig+ Vaa =0
due to the equation (12). Now, by Proposition 2.5,
Uz = Z Z (=) VDM fi(ap0) @ -+ ® agiy))
0ESiy ig,j1—1,4o 11 +1<p<i1+iz
J2(Go(iy11) @ - ® A1) * Ao (141) "~ Co(14T—1)
@ bo(1) o (in)bo(in+1) *  bo(p) -+ Vo)
91(bo(p) ® bo(141) @+ @ b (145,))92(bo(14j1+1) @+ @ b (147-1))
2. do (DI sgn(r) (1) (e
TESiy ig—1,j1,49 11+12<g<i1+i2+51—1
fl(a.,-(l) @ - ® aT(il))fQ(aT(i1+l) ® e ® a_r(q) ® e ® a’T(I*l))
Ar(ry " Or(147-1) @ br(1y - br(i)bray41) - brz—1)
91(br(q) @ br(r) @ -+ @ br(q) @ -+ br(145))
92(br(14j14+1) @ @ br(r47-1))
=— V2.

By a similar process, we obtain that U = —Vis. That is, we finish the
proof. O

Remark 3.4. Finally, we talk some words on Batalin-Vilkovisky algebra. By
definition, Batalin-Vilkovisky algebra is a Gerstenhaber algebra H together
with an operator A of degree —1 such that A% = 0 and that the equation

—(=1)m=I" [ b] .= A(a Ab) — Ala) Ab— (=1)"a A A(b)

holds for a € H™ b € H". If A is a Calabi-Yau or a symmetric Frobenius al-
gebra, the Hochschild cohomology ring HH*(A) is a Batalin-Vilkovisky algebra
[4,6,14]. If R is a unimodular smooth Poisson algebra or a unimodular Frobe-
nius Poisson algebra, HP*(R) is a Batalin-Vilkovisky algebra [15,16]. Some
general cases were studied in [8,9,13]. It is proved that if both A and B are
symmetric Frobenius algebra, then

HH"(A) @ HH*(B) = HH* (A ® B)

is an isomorphic of Batalin-Vilkovisky algebras in [11]. Here, if we consider the
tensor product of unimodular smooth Poisson algebras or of unimodular Frobe-
nius Poisson algebras, then the isomorphism in Theorem 3.3 is an isomorphism
of Batalin-Vilkovisky algebras.
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