References
- Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., Chock, P. B. and Rhee, S. G. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217-221. https://doi.org/10.1074/jbc.272.1.217
- Beachwood, E. C., Berndt, W. O. and Mudge, G. H. (1964) Stop-flow analysis of tubular transport of uric acid in rabbits. Am. J. Physiol. 207, 1265-1272. https://doi.org/10.1152/ajplegacy.1964.207.6.1265
- Bishop, C. and Pfaff, W. (1955) Immediate uricosuric effect of probenecid in normal humans. Proc. Soc. Exp. Biol. Med. 88, 346-348. https://doi.org/10.3181/00379727-88-21584
- Boger, W. P. and Strickland, S. C. (1955) Probenecid (benemid); Its uses and side-effects in 2,502 patients. AMA Arch. Intern. Med. 95, 83-92. https://doi.org/10.1001/archinte.1955.00250070099012
- Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
- Chandra, J., Samali, A. and Orrenius, S. (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 29, 323-333. https://doi.org/10.1016/S0891-5849(00)00302-6
- Chen, L., Liu, L., Yin, J., Luo, Y. and Huang, S. (2009) Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int. J. Biochem. Cell Biol. 41, 1284-1295 https://doi.org/10.1016/j.biocel.2008.10.029
- Chen, G., Xu, Q., Dai, M. and Liu, X. (2019) Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-kB and JNK signaling pathways. Biochem. Biophys. Res. Commun. 509, 329-334 https://doi.org/10.1016/j.bbrc.2018.12.112
- Darnay, B. G., Ni, J., Moore, P. A. and Aggarwal, B. B. (1999) Activation of NK-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J. Biol. Chem. 274, 7724-7777. https://doi.org/10.1074/jbc.274.12.7724
- Du, L., Empey, P. E., Ji, J., Chao, H., Kochanek, P. M., Bayir, H. and Clark, R. S. (2016) Probenecid and N-Acetylcysteine prevent loss of intracellular glutathione and inhibit neuronal death after mechanical stretch injury in vitro. J. Neurotrauma 33, 1913-1917. https://doi.org/10.1089/neu.2015.4342
- Forman, H. J., Fukuto, J. M. and Torres, M. (2004) Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am. J. Physiol. Cell Physiol. 287, 246-256. https://doi.org/10.1152/ajpcell.00516.2003
- Fraser, J. H., Helfrich, M. H., Wallace, H. M. and Ralston, S. H. (1996) Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone 19, 223-226. https://doi.org/10.1016/8756-3282(96)00177-9
- Garrett, I. R., Boyce, B. F., Oreffo, R. O., Bonewald, L., Poser, J. and Mundy, G. R. (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro in vivo. J. Clin. Invest. 85, 632-639. https://doi.org/10.1172/JCI114485
- Geng, D. G., Zhu, X. S., Mao, H. Q., Meng, B., Chen, L., Yang, H. L. and Xu, Y. Z. (2011) Protection against titanium particle-induced osteoclastogenesis by cyclooxygenase-2 selective inhibitor. J. Biomed. Mater. Res. 99, 516-522
- Greene, E. L., Velarde, V. and Jaffa, A. A. (2000) Role of reactive oxygen species in bradykinin-induced mitogen-activated protein kinase and c-fos induction in vascular cells. Hypertension 35, 942-947. https://doi.org/10.1161/01.HYP.35.4.942
- Gutman, A. B. (1951) Some recent advances in the study of uric acid metabolism and gout. Bull. N. Y. Acad. Med. 27, 144-164
- Hall, T. J., Schaeublin, M., Jeker, H., Fuller, K. and Chambers, T. J. (1995) The role of reactive oxygen intermediates in osteoclastic bone resorption. Biochem. Biophys. Res. Commun. 207, 280-287. https://doi.org/10.1006/bbrc.1995.1184
- Hou, G. Q., Guo, C., Song, G. H., Fang, N., Fan, W. J., Chen, X. D., Yuan, L. and Wang, Z. Q. (2013) Lipopolysaccharide (LPS) promotes osteoclast differentiation and activation by enhancing the MAPK pathway and COX-2 expression in RAW264.7 cells. Int. J. Mol. Med. 32, 503-510. https://doi.org/10.3892/ijmm.2013.1406
- Hwang, J. S., Ham, S. A., Yoo, T., Lee, W. J., Paek, K. S., Kim, J. H., Lee, C. H. and Seo, H. G. (2016) Upregulation of MKP-7 in response to rosiglitazone treatmentameliorates lipopolysaccharideinduced destabilization of SIRT1 byinactivating JNK. Pharmacol. Res. 114, 47-55. https://doi.org/10.1016/j.phrs.2016.10.014
- Jang, H. J. and Kim, S. J. (2013) Taurine exerts anti-osteoclastogenesis activity via inhibiting ROS generation, JNK phosphorylation and COX-2 expression in RAW264.7 cells. J. Recept. Signal Transduct. Res. 33, 387-391. https://doi.org/10.3109/10799893.2013.839999
- Lee, N. K., Choi, Y. G., Baik, J. Y., Han, S. Y., Jeong, D. W., Bae, Y. S., Kim, N. and Lee, S. Y. (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106, 852-859. https://doi.org/10.1182/blood-2004-09-3662
- Lin, Y. C., Huang, Y. C., Chen, S. C., Liaw, C. C., Kuo, S. C., Huang, L. J. and Gean, P. W. (2009) Neuroprotective effects of Ugonin K on hydrogen peroxide-induced cell death in human neuroblastoma SH-SY5Y cells. Neurochem. Res. 34, 923-930. https://doi.org/10.1007/s11064-008-9860-0
- Matsumoto, M., Sudo, T., Saito, T., Osada, H. and Tsujimoto, M. (2000) Involvement of p38 mitogenactivated protein kinase signalinf pathway in osteoclastogenesis mediated by receptor activator of NFkappa B ligand (RANKL). J. Biol. Chem. 275, 31155-31161. https://doi.org/10.1074/jbc.M001229200
- Mizutani, H., Ishihara, Y., Izawa, A., Fujihara, Y., Kobayashi, S., Gotou, H., Okabe, E., Takeda, H., Ozawa, Y., Kamiya, Y., Kamei, H., Kikuchi, T., Yamamoto, G., Mitani, A., Nishihara, T. and Noguchi, T. (2013) Lipopolysaccharide of Aggregatibacter actinomycetem-comitans up-regulates inflammatory cytokines, prostaglandin E2 synthesis and osteoclast formation in interleukin-1 receptor antagonist-deficient mice. J. Periodont. Res. 48, 748-756. https://doi.org/10.1111/jre.12065
- Moller, J. V. (1965) The tubular site of urate transport in the rabbit kidney, and the effect of probenecid on urate secretion. Acta Pharmacol. Toxicol. (Copenh.) 23, 329-336. https://doi.org/10.1111/j.1600-0773.1965.tb00358.x
- Oka, Y., Iwai, S., Amano, H., Irie, Y., Yatomi, K., Ryu, K., Yamada, S., Inagaki, K. and Oguchi, K. (2012) Tea polyphenols inhibit rat osteoclsat formation and differentiation. J. Pharmacol. Sci. 118, 55-64. https://doi.org/10.1254/jphs.11082FP
- Oldenburg, I., Qin, Q., Krieg, T., Yang, X. M., Philipp, S., Critz, S. D., Cohen, M. V. and Downey, J. M. (2004) Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 286, H468-H476. https://doi.org/10.1152/ajpheart.00360.2003
- Park, J. B. and Kim, S. J. (2011) Anti-hypertensive effects of probenecid via inhibition of the a-adrenergic receptor. Pharmacol. Rep. 63, 1145-1150 https://doi.org/10.1016/S1734-1140(11)70633-8
-
Ruffels, J., Griffin, M. and Dickenson, J. M. (2004) Activation of ERK1/2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: Role of ERK1/2 in H2
$O_2$ -induced cell death. Eur. J. Pharmacol. 483, 163-173. https://doi.org/10.1016/j.ejphar.2003.10.032 - Schapoval, E. E., Vargas, M. R., Chaves, C. G., Bridi, R., Zuanazzi, J. A. and Henriques, A. T. (1998) Antiinflammatory and antinociceptive activities of extracts and isolated compounds from Stachytarpheta cayennensis. J. Ethnopharmacol. 60, 53-59. https://doi.org/10.1016/S0378-8741(97)00136-0
- Sirota, J. H., Yu, T. F. and Gutman, A. B. (1952) Effect of benemid (p-[di-n-propylsulfamyl]-benzoic acid) on urate clearance and other discrete renal functions in gouty subjects. J. Clin. Invest. 31, 692-701. https://doi.org/10.1172/JCI102651
- Steinbeck, M. J., Appel, W. H., Jr., Verhoeven, A. J. and Karnovsky, M. J. (1994) NADPH-oxidase expression and in situ production of superoxide by osteoclasts actively resorbing bone. J. Cell Biol. 126, 765-772. https://doi.org/10.1083/jcb.126.3.765
- Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T. and Martin, T. J. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357. https://doi.org/10.1210/edrv.20.3.0367
-
Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. and Finkel, T. (1995) Requirement for generation of
$H_2O_2$ for platelet-derived growth factor signal tranduction. Science 270, 296-299. https://doi.org/10.1126/science.270.5234.296 - Talbott, J. H. (1951) Clinical and metabolic effects of benemid in gout. Bull. Rheum. Dis. 2, 1-2.
- Tang, T., Scambler, T. E., Smallie, T., Cunliffe, H. E., Ross, E. A., Rosner, D. R., O'Neil, J. D. and Clark, A. R. (2017) Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E2, dual specificity phosphatase 1 and tristetraprolin. Sci. Rep. 7, 4350. https://doi.org/10.1038/s41598-017-04100-1
- Teitelbaum, S. L. and Ross, F. P. (2003) Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649. https://doi.org/10.1038/nrg1122
- Thannickal, V. J. and Fanburg, B. L. (2000) Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1005-L1028. https://doi.org/10.1152/ajplung.2000.279.6.L1005
- Vietinghoff, G., Hilscher, E., Paegelow, I. and Reissmann, S. (2003) Effect of bradykinin analogues on the B1 receptor of rat ileum. Peptides 24, 931-935. https://doi.org/10.1016/S0196-9781(03)00157-8
- Wu, H., Hu, B., Zhou, X., Zhou, C., Meng, J., Yang, Y., Zhao, X., Shi, Z. and Yan, S. (2018) Artemether attenuates LPS-inducedinflammatory bone loss by inhibiting osteoclastogenesis andbone resorption via suppression of MAPK signaling pathway. Cell Death Dis. 9, 498. https://doi.org/10.1038/s41419-018-0540-y
- Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N. and Suda, T. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U.S.A. 95, 3597-3602. https://doi.org/10.1073/pnas.95.7.3597
- Zhang, L., Yu, H., Sun, Y., Lin, X., Chen, B., Tan, C., Cao, G. and Wang, Z. (2007) Protective effects of salodroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur. J. Pharmacol. 564, 18-25. https://doi.org/10.1016/j.ejphar.2007.01.089
-
Zhang, X., Li, X., Fang, J., Hou, X., Fang, H., Guo, F., Li, F., Chen, A. and Huang, S. (2018) (2R,3R)Dihydromyricetin inhibits osteoclastogenesis and bone loss through scavenging LPS-induced oxidative stress and NF-
${\kappa}B$ and MAPKs pathways activating. J. Cell. Biochem. 119, 8981-8995. https://doi.org/10.1002/jcb.27154 - Zhang, Y. H., Heulsmann, A., Tondravi, M. M., Mukherjee, A. and Abu-Amer, Y. (2001) Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J. Biol. Chem. 276, 563-568. https://doi.org/10.1074/jbc.M008198200
- Zhuang, S., Yan, Y., Daubert, R. A., Han, J. and Schnellmann, R. G. (2007) ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. Am. J. Renal Physiol. 292, 440-447.