DOI QR코드

DOI QR Code

Four Novel Synthetic Tryptamine Analogs Induce Head-Twitch Responses and Increase 5-HTR2a in the Prefrontal Cortex in Mice

  • Abiero, Arvie (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Ryu, In Soo (Center for Safety Pharmacology, Korea Institute of Toxicology) ;
  • Botanas, Chrislean Jun (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Custodio, Raly James Perez (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Sayson, Leandro Val (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Kim, Mikyung (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Lee, Hyun Jun (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Kim, Hee Jin (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University) ;
  • Seo, Joung-Wook (Center for Safety Pharmacology, Korea Institute of Toxicology) ;
  • Cho, Min Chang (Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Lee, Kun Won (Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Yoo, Sung Yeun (Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Jang, Choon-Gon (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University) ;
  • Lee, Yong Sup (Medicinal Chemistry Laboratory, Department of Pharmacy & Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Cheong, Jae Hoon (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University)
  • Received : 2019.03.15
  • Accepted : 2019.05.23
  • Published : 2019.12.30

Abstract

Tryptamines are monoamine alkaloids with hallucinogenic properties and are widely abused worldwide. To hasten the regulations of novel substances and predict their abuse potential, we designed and synthesized four novel synthetic tryptamine analogs: Pyrrolidino tryptamine hydrochloride (PYT HCl), Piperidino tryptamine hydrochloride (PIT HCl), N,N-dibutyl tryptamine hydrochloride (DBT HCl), and 2-Methyl tryptamine hydrochloride (2-MT HCl). Then, we evaluated their rewarding and reinforcing effects using the conditioned place preference (CPP) and self-administration (SA) paradigms. We conducted an open field test (OFT) to determine the effects of the novel compounds on locomotor activity. A head-twitch response (HTR) was also performed to characterize their hallucinogenic properties. Lastly, we examined the effects of the compounds on 5-HTR1a and 5-HTR2a in the prefrontal cortex using a quantitative real-time polymerase chain reaction (qRT-PCR) assay. None of the compounds induced CPP in mice or initiated SA in rats. PYT HCl and PIT HCl reduced the locomotor activity and elevated the 5-HTR1a mRNA levels in mice. Acute and repeated treatment with the novel tryptamines elicited HTR in mice. Furthermore, a drug challenge involving a 7-day abstinence from drug use produced higher HTR than acute and repeated treatments. Both the acute treatment and drug challenge increased the 5-HTR2a mRNA levels. Ketanserin blocked the induced HTR. Taken together, the findings suggest that PYT HCl, PIT HCl, DBT HCl, and 2-MT HCl produce hallucinogenic effects via 5-HTR2a stimulation, but may have low abuse potential.

Keywords

References

  1. Abiero, A., Botanas, C. J., Sayson, L. V., Custodio, R. J., de la Pena, J. B., Kim, M., Lee, H. J., Seo, J. W., Ryu, I. S., Chang, C. M., Yang, J. S., Lee, Y. S., Jang, C. G., Kim, H. J. and Cheong, J. H. (2019) 5-Methoxy-${\alpha}$-methyltryptamine (5-MeO-AMT), a tryptamine derivative, induces head-twitch responses in mice through the activation of serotonin receptor 2a in the prefrontal cortex. Behav. Brain Res. 359, 828-835. https://doi.org/10.1016/j.bbr.2018.07.020
  2. Anji, A., Kumari, M., Hanley, N. S., Bryan, G. L. and Hensler, J. G. (2000) Regulation of 5-HT2A receptor mRNA levels and binding sites in rat frontal cortex by the agonist DOI and the antagonist mianserin. Neuropharmacology 39, 1996-2005. https://doi.org/10.1016/S0028-3908(00)00026-5
  3. Araujo, A. M., Carvalho, F., de Lourdes Bastos, M., De Pinho, P. G. and Carvalho, M. (2015) The hallucinogenic world of tryptamines: an updated review. Arch. Toxicol. 89, 1151-1173. https://doi.org/10.1007/s00204-015-1513-x
  4. Berry, J. N., Neugebauer, N. M. and Bardo, M. T. (2012) Reinstatement of methamphetamine conditioned place preference in nicotine-sensitized rats. Behav. Brain Res. 235, 158-165. https://doi.org/10.1016/j.bbr.2012.07.043
  5. Botanas, C. J., de la Pena, J. B., Custodio, R. J., dela Pena, I. J., Kim, M., Woo, T., Kim, H. J., Kim, H. I., Cho, M. C., Lee, Y. S. and Cheong, J. H. (2017) Methoxetamine produces rapid and sustained antidepressant effects probably via glutamatergic and serotonergic mechanisms. Neuropharmacology 126, 121-127. https://doi.org/10.1016/j.neuropharm.2017.08.038
  6. Canal, C. E. and Morgan, D. (2012) Head-twitch response in rodents induced by the hallucinogen 2, 5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test. Anal. 4, 556-576. https://doi.org/10.1002/dta.1333
  7. Carbonaro, T. M. and Gatch, M. B. (2016) Neuropharmacology of N, N-dimethyltryptamine. Brain Res. Bull. 126, 74-88. https://doi.org/10.1016/j.brainresbull.2016.04.016
  8. Corne, S. and Pickering, R. (1967) A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia 11, 65-78. https://doi.org/10.1007/BF00401509
  9. Corne, S., Pickering, R. and Warner, B. (1963) A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br. J. Pharmacol. Chemother. 20, 106-120. https://doi.org/10.1111/j.1476-5381.1963.tb01302.x
  10. Creehan, K. M., Vandewater, S. A. and Taffe, M. A. (2015) Intravenous self-administration of mephedrone, methylone and MDMA in female rats. Neuropharmacology 92, 90-97. https://doi.org/10.1016/j.neuropharm.2015.01.003
  11. Darmani, N. A., Martin, B. R. and Glennon, R. A. (1990a) Withdrawal from chronic treatment with (+/-)-DOI causes super-sensitivity to 5-HT2 receptor-induced head-twitch behaviour in mice. Eur. J. Pharmacol. 186, 115-118. https://doi.org/10.1016/0014-2999(90)94066-7
  12. Darmani, N. A., Martin, B. R., Pandey, U. and Glennon, R. A. (1990b) Do functional relationships exist between 5-HT1A and 5-HT2 receptors? Pharmacol. Biochem. Behav. 36, 901-906. https://doi.org/10.1016/0091-3057(90)90098-3
  13. de la Pena, J. B. I., Lee, H. C., de la Pena, I. C., Woo, T. S., Yoon, S. Y., Lee, H. L., Han, J. S., Lee, J. I., Cho, Y. J., Shin, C. Y. and Cheong, J. H. (2012) Rewarding and reinforcing effects of the NMDA receptor antagonist-benzodiazepine combination, $zoletil^{(R)}$: Difference between acute and repeated exposure. Behav. Brain Res. 233, 434-442. https://doi.org/10.1016/j.bbr.2012.05.038
  14. Drug Enforcement Administration (DEA), Department of Justice (2003) Schedules of controlled substances: temporary placement of alpha-methyltryptamine and 5-methoxy-N, N-diisopropyltryptamine into Schedule I. Final rule. Fed. Regist. 68, 16427.
  15. Erberk, N. O. and Rezaki, M. (2007) Prefrontal cortex: implications for memory functions and dementia. Turk Psikiyatri Derg. 18, 262-269.
  16. Fantegrossi, W., Harrington, A., Kiessel, C., Eckler, J., Rabin, R., Winter, J., Coop, A., Rice, K. and Woods, J. (2006) Hallucinogen-like actions of 5-methoxy-N, N-diisopropyltryptamine in mice and rats. Pharmacol. Biochem. Behav. 83, 122-129. https://doi.org/10.1016/j.pbb.2005.12.015
  17. Fantegrossi, W., Simoneau, J., Cohen, M., Zimmerman, S., Henson, C., Rice, K. and Woods, J. (2010) Interaction of 5-HT2A and 5-HT2C receptors in R (-)-2, 5-dimethoxy-4-iodoamphetamineelicited head twitch behavior in mice. J. Pharmacol. Exp. Ther. 335, 728-734. https://doi.org/10.1124/jpet.110.172247
  18. Fantegrossi, W. E., Murnane, K. S. and Reissig, C. J. (2008) The behavioral pharmacology of hallucinogens. Biochem. Pharmacol. 75, 17-33. https://doi.org/10.1016/j.bcp.2007.07.018
  19. Fuster, J. M. (1991) The prefrontal cortex and its relation to behavior. In Progress in brain research (Vol. 87), pp. 201-211. Elsevier.
  20. Gatch, M. B., Forster, M. J., Janowsky, A. and Eshleman, A. J. (2011) Abuse liability profile of three substituted tryptamines. J. Pharmacol. Exp. Ther. 338, 280-289. https://doi.org/10.1124/jpet.111.179705
  21. Gibbons, S. (2012) 'Legal highs'-novel and emerging psychoactive drugs: a chemical overview for the toxicologist. Clin. Toxicol. 50, 15-24. https://doi.org/10.3109/15563650.2011.645952
  22. Gribble, G. W. and Pelcman, B. (1992) Total syntheses of the marine sponge pigments fascaplysin and homofascaplysin B and C. J. Org. Chem. 57, 3636-3642. https://doi.org/10.1021/jo00039a024
  23. Halberstadt, A. L. and Geyer, M. A. (2011) Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61, 364-381. https://doi.org/10.1016/j.neuropharm.2011.01.017
  24. Halberstadt, A. L., Koedood, L., Powell, S. B. and Geyer, M. A. (2011) Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J. Psychopharmacol. (Oxf.) 25, 1548-1561. https://doi.org/10.1177/0269881110388326
  25. Hill, S. L. and Thomas, S. H. (2011) Clinical toxicology of newer recreational drugs. Clin. Toxicol. 49, 705-719. https://doi.org/10.3109/15563650.2011.615318
  26. Kitanaka, J., Kitanaka, N. and Takemura, M. (2003) Chronic methamphetamine administration reduces histamine-stimulated phosphoinositide hydrolysis in mouse frontal cortex. Biochem. Biophys. Res. Commun. 300, 932-937. https://doi.org/10.1016/S0006-291X(02)02948-0
  27. Krebs-Thomson, K., Paulus, M. P. and Geyer, M. A. (1998) Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology 18, 339-351. https://doi.org/10.1016/S0893-133X(97)00164-4
  28. Krebs-Thomson, K., Ruiz, E. M., Masten, V., Buell, M. and Geyer, M. A. (2006) The roles of 5-HT 1A and 5-HT 2 receptors in the effects of 5-MeO-DMT on locomotor activity and prepulse inhibition in rats. Psychopharmacology 189, 319-329. https://doi.org/10.1007/s00213-006-0566-1
  29. McFadden, L. M., Hadlock, G. C., Allen, S. C., Vieira-Brock, P. L., Stout, K. A., Ellis, J. D., Hoonakker, A. J., Andrenyak, D. M., Nielsen, S. M., Wilkins, D. G., Hanson, G. R. and Fleckenstein, A. E. (2012) Methamphetamine self-administration causes persistent striatal dopaminergic alterations and mitigates the deficits caused by a subsequent methamphetamine exposure. J. Pharmacol. Exp. Ther. 340, 295-303. https://doi.org/10.1124/jpet.111.188433
  30. Nagai, F., Nonaka, R. and Kamimura, K. S. H. (2007) The effects of non-medically used psychoactive drugs on monoamine neuro-transmission in rat brain. Eur. J. Pharmacol. 559, 132-137. https://doi.org/10.1016/j.ejphar.2006.11.075
  31. Nichols, D. E. (2004) Hallucinogens. Pharmacol. Ther. 101, 131-181. https://doi.org/10.1016/j.pharmthera.2003.11.002
  32. Nichols, D. E. (2016) Psychedelics. Pharmacol. Rev. 68, 264-355. https://doi.org/10.1124/pr.115.011478
  33. Peden, N. R., Macaulay, K., Bissett, A. F., Crooks, J. and Pelosi, A. (1981) Clinical toxicology of 'magic mushroom' ingestion. Postgrad. Med. J. 57, 543-545. https://doi.org/10.1136/pgmj.57.671.543
  34. Pranzatelli, M. R. and Pluchino, R. S. (1991) The relation of central 5-HT1A and 5-HT2 receptors: Low dose agonist-induced selective tolerance in the rat. Pharmacol. Biochem. Behav. 39, 407-413. https://doi.org/10.1016/0091-3057(91)90199-C
  35. Ray, T. S. (2010) Psychedelics and the human receptorome. PLoS ONE 5, e9019. https://doi.org/10.1371/journal.pone.0009019
  36. Rickli, A., Kopf, S., Hoener, M. C. and Liechti, M. E. (2015) Pharmacological profile of novel psychoactive benzofurans. Br. J. Pharmacol. 172, 3412-3425. https://doi.org/10.1111/bph.13128
  37. Smith, D. A., Bailey, J. M., Williams, D. and Fantegrossi, W. E. (2014) Tolerance and cross-tolerance to head twitch behavior elicited by phenethylamine-and tryptamine-derived hallucinogens in mice. J. Pharmacol. Exp. Ther. 351, 485-491. https://doi.org/10.1124/jpet.114.219337
  38. Spijker, S. (2011) Dissection of rodent brain regions. In Neuroproteomics, pp. 13-26. Springer.
  39. Tittarelli, R., Mannocchi, G., Pantano, F. and Saverio Romolo, F. (2015) Recreational use, analysis and toxicity of tryptamines. Curr. Neuropharmacol. 13, 26-46. https://doi.org/10.2174/1570159X13666141210222409
  40. Vallejos, G., Fierro, A., Rezende, M. C., Sepulveda-Boza, S. and Reyes-Parada, M. (2005) Heteroarylisopropylamines as MAO inhibitors. Bioorg. Med. Chem. 13, 4450-4457. https://doi.org/10.1016/j.bmc.2005.04.045
  41. van den Buuse, M., Ruimschotel, E., Martin, S., Risbrough, V. B. and Halberstadt, A. L. (2011) Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT1A receptor knockout mice: implications for schizophrenia. Neuropharmacology 61, 209-216. https://doi.org/10.1016/j.neuropharm.2011.04.001
  42. VanGuilder, H. D., Vrana, K. E. and Freeman, W. M. (2008) Twentyfive years of quantitative PCR for gene expression analysis. Biotechniques 44, 619-626. https://doi.org/10.2144/000112776
  43. Willins, D. L. and Meltzer, H. Y. (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a headtwitch response in rats. J. Pharmacol. Exp. Ther. 282, 699-706.
  44. Winter, J. C. (2009) Hallucinogens as discriminative stimuli in animals: LSD, phenethylamines, and tryptamines. Psychopharmacology 203, 251-263. https://doi.org/10.1007/s00213-008-1356-8

Cited by

  1. Two newly-emerging substituted phenethylamines MAL and BOD induce differential psychopharmacological effects in rodents vol.34, pp.9, 2020, https://doi.org/10.1177/0269881120936458
  2. 25B‐NBOMe, a novel N ‐2‐methoxybenzyl‐phenethylamine (NBOMe) derivative, may induce rewarding and reinforcing effects via a dopaminergic mechanism: Evidence of abuse potent vol.25, pp.6, 2020, https://doi.org/10.1111/adb.12850