References
-
Abiero, A., Botanas, C. J., Sayson, L. V., Custodio, R. J., de la Pena, J. B., Kim, M., Lee, H. J., Seo, J. W., Ryu, I. S., Chang, C. M., Yang, J. S., Lee, Y. S., Jang, C. G., Kim, H. J. and Cheong, J. H. (2019) 5-Methoxy-
${\alpha}$ -methyltryptamine (5-MeO-AMT), a tryptamine derivative, induces head-twitch responses in mice through the activation of serotonin receptor 2a in the prefrontal cortex. Behav. Brain Res. 359, 828-835. https://doi.org/10.1016/j.bbr.2018.07.020 - Anji, A., Kumari, M., Hanley, N. S., Bryan, G. L. and Hensler, J. G. (2000) Regulation of 5-HT2A receptor mRNA levels and binding sites in rat frontal cortex by the agonist DOI and the antagonist mianserin. Neuropharmacology 39, 1996-2005. https://doi.org/10.1016/S0028-3908(00)00026-5
- Araujo, A. M., Carvalho, F., de Lourdes Bastos, M., De Pinho, P. G. and Carvalho, M. (2015) The hallucinogenic world of tryptamines: an updated review. Arch. Toxicol. 89, 1151-1173. https://doi.org/10.1007/s00204-015-1513-x
- Berry, J. N., Neugebauer, N. M. and Bardo, M. T. (2012) Reinstatement of methamphetamine conditioned place preference in nicotine-sensitized rats. Behav. Brain Res. 235, 158-165. https://doi.org/10.1016/j.bbr.2012.07.043
- Botanas, C. J., de la Pena, J. B., Custodio, R. J., dela Pena, I. J., Kim, M., Woo, T., Kim, H. J., Kim, H. I., Cho, M. C., Lee, Y. S. and Cheong, J. H. (2017) Methoxetamine produces rapid and sustained antidepressant effects probably via glutamatergic and serotonergic mechanisms. Neuropharmacology 126, 121-127. https://doi.org/10.1016/j.neuropharm.2017.08.038
- Canal, C. E. and Morgan, D. (2012) Head-twitch response in rodents induced by the hallucinogen 2, 5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test. Anal. 4, 556-576. https://doi.org/10.1002/dta.1333
- Carbonaro, T. M. and Gatch, M. B. (2016) Neuropharmacology of N, N-dimethyltryptamine. Brain Res. Bull. 126, 74-88. https://doi.org/10.1016/j.brainresbull.2016.04.016
- Corne, S. and Pickering, R. (1967) A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia 11, 65-78. https://doi.org/10.1007/BF00401509
- Corne, S., Pickering, R. and Warner, B. (1963) A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br. J. Pharmacol. Chemother. 20, 106-120. https://doi.org/10.1111/j.1476-5381.1963.tb01302.x
- Creehan, K. M., Vandewater, S. A. and Taffe, M. A. (2015) Intravenous self-administration of mephedrone, methylone and MDMA in female rats. Neuropharmacology 92, 90-97. https://doi.org/10.1016/j.neuropharm.2015.01.003
- Darmani, N. A., Martin, B. R. and Glennon, R. A. (1990a) Withdrawal from chronic treatment with (+/-)-DOI causes super-sensitivity to 5-HT2 receptor-induced head-twitch behaviour in mice. Eur. J. Pharmacol. 186, 115-118. https://doi.org/10.1016/0014-2999(90)94066-7
- Darmani, N. A., Martin, B. R., Pandey, U. and Glennon, R. A. (1990b) Do functional relationships exist between 5-HT1A and 5-HT2 receptors? Pharmacol. Biochem. Behav. 36, 901-906. https://doi.org/10.1016/0091-3057(90)90098-3
-
de la Pena, J. B. I., Lee, H. C., de la Pena, I. C., Woo, T. S., Yoon, S. Y., Lee, H. L., Han, J. S., Lee, J. I., Cho, Y. J., Shin, C. Y. and Cheong, J. H. (2012) Rewarding and reinforcing effects of the NMDA receptor antagonist-benzodiazepine combination,
$zoletil^{(R)}$ : Difference between acute and repeated exposure. Behav. Brain Res. 233, 434-442. https://doi.org/10.1016/j.bbr.2012.05.038 - Drug Enforcement Administration (DEA), Department of Justice (2003) Schedules of controlled substances: temporary placement of alpha-methyltryptamine and 5-methoxy-N, N-diisopropyltryptamine into Schedule I. Final rule. Fed. Regist. 68, 16427.
- Erberk, N. O. and Rezaki, M. (2007) Prefrontal cortex: implications for memory functions and dementia. Turk Psikiyatri Derg. 18, 262-269.
- Fantegrossi, W., Harrington, A., Kiessel, C., Eckler, J., Rabin, R., Winter, J., Coop, A., Rice, K. and Woods, J. (2006) Hallucinogen-like actions of 5-methoxy-N, N-diisopropyltryptamine in mice and rats. Pharmacol. Biochem. Behav. 83, 122-129. https://doi.org/10.1016/j.pbb.2005.12.015
- Fantegrossi, W., Simoneau, J., Cohen, M., Zimmerman, S., Henson, C., Rice, K. and Woods, J. (2010) Interaction of 5-HT2A and 5-HT2C receptors in R (-)-2, 5-dimethoxy-4-iodoamphetamineelicited head twitch behavior in mice. J. Pharmacol. Exp. Ther. 335, 728-734. https://doi.org/10.1124/jpet.110.172247
- Fantegrossi, W. E., Murnane, K. S. and Reissig, C. J. (2008) The behavioral pharmacology of hallucinogens. Biochem. Pharmacol. 75, 17-33. https://doi.org/10.1016/j.bcp.2007.07.018
- Fuster, J. M. (1991) The prefrontal cortex and its relation to behavior. In Progress in brain research (Vol. 87), pp. 201-211. Elsevier.
- Gatch, M. B., Forster, M. J., Janowsky, A. and Eshleman, A. J. (2011) Abuse liability profile of three substituted tryptamines. J. Pharmacol. Exp. Ther. 338, 280-289. https://doi.org/10.1124/jpet.111.179705
- Gibbons, S. (2012) 'Legal highs'-novel and emerging psychoactive drugs: a chemical overview for the toxicologist. Clin. Toxicol. 50, 15-24. https://doi.org/10.3109/15563650.2011.645952
- Gribble, G. W. and Pelcman, B. (1992) Total syntheses of the marine sponge pigments fascaplysin and homofascaplysin B and C. J. Org. Chem. 57, 3636-3642. https://doi.org/10.1021/jo00039a024
- Halberstadt, A. L. and Geyer, M. A. (2011) Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61, 364-381. https://doi.org/10.1016/j.neuropharm.2011.01.017
- Halberstadt, A. L., Koedood, L., Powell, S. B. and Geyer, M. A. (2011) Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J. Psychopharmacol. (Oxf.) 25, 1548-1561. https://doi.org/10.1177/0269881110388326
- Hill, S. L. and Thomas, S. H. (2011) Clinical toxicology of newer recreational drugs. Clin. Toxicol. 49, 705-719. https://doi.org/10.3109/15563650.2011.615318
- Kitanaka, J., Kitanaka, N. and Takemura, M. (2003) Chronic methamphetamine administration reduces histamine-stimulated phosphoinositide hydrolysis in mouse frontal cortex. Biochem. Biophys. Res. Commun. 300, 932-937. https://doi.org/10.1016/S0006-291X(02)02948-0
- Krebs-Thomson, K., Paulus, M. P. and Geyer, M. A. (1998) Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology 18, 339-351. https://doi.org/10.1016/S0893-133X(97)00164-4
- Krebs-Thomson, K., Ruiz, E. M., Masten, V., Buell, M. and Geyer, M. A. (2006) The roles of 5-HT 1A and 5-HT 2 receptors in the effects of 5-MeO-DMT on locomotor activity and prepulse inhibition in rats. Psychopharmacology 189, 319-329. https://doi.org/10.1007/s00213-006-0566-1
- McFadden, L. M., Hadlock, G. C., Allen, S. C., Vieira-Brock, P. L., Stout, K. A., Ellis, J. D., Hoonakker, A. J., Andrenyak, D. M., Nielsen, S. M., Wilkins, D. G., Hanson, G. R. and Fleckenstein, A. E. (2012) Methamphetamine self-administration causes persistent striatal dopaminergic alterations and mitigates the deficits caused by a subsequent methamphetamine exposure. J. Pharmacol. Exp. Ther. 340, 295-303. https://doi.org/10.1124/jpet.111.188433
- Nagai, F., Nonaka, R. and Kamimura, K. S. H. (2007) The effects of non-medically used psychoactive drugs on monoamine neuro-transmission in rat brain. Eur. J. Pharmacol. 559, 132-137. https://doi.org/10.1016/j.ejphar.2006.11.075
- Nichols, D. E. (2004) Hallucinogens. Pharmacol. Ther. 101, 131-181. https://doi.org/10.1016/j.pharmthera.2003.11.002
- Nichols, D. E. (2016) Psychedelics. Pharmacol. Rev. 68, 264-355. https://doi.org/10.1124/pr.115.011478
- Peden, N. R., Macaulay, K., Bissett, A. F., Crooks, J. and Pelosi, A. (1981) Clinical toxicology of 'magic mushroom' ingestion. Postgrad. Med. J. 57, 543-545. https://doi.org/10.1136/pgmj.57.671.543
- Pranzatelli, M. R. and Pluchino, R. S. (1991) The relation of central 5-HT1A and 5-HT2 receptors: Low dose agonist-induced selective tolerance in the rat. Pharmacol. Biochem. Behav. 39, 407-413. https://doi.org/10.1016/0091-3057(91)90199-C
- Ray, T. S. (2010) Psychedelics and the human receptorome. PLoS ONE 5, e9019. https://doi.org/10.1371/journal.pone.0009019
- Rickli, A., Kopf, S., Hoener, M. C. and Liechti, M. E. (2015) Pharmacological profile of novel psychoactive benzofurans. Br. J. Pharmacol. 172, 3412-3425. https://doi.org/10.1111/bph.13128
- Smith, D. A., Bailey, J. M., Williams, D. and Fantegrossi, W. E. (2014) Tolerance and cross-tolerance to head twitch behavior elicited by phenethylamine-and tryptamine-derived hallucinogens in mice. J. Pharmacol. Exp. Ther. 351, 485-491. https://doi.org/10.1124/jpet.114.219337
- Spijker, S. (2011) Dissection of rodent brain regions. In Neuroproteomics, pp. 13-26. Springer.
- Tittarelli, R., Mannocchi, G., Pantano, F. and Saverio Romolo, F. (2015) Recreational use, analysis and toxicity of tryptamines. Curr. Neuropharmacol. 13, 26-46. https://doi.org/10.2174/1570159X13666141210222409
- Vallejos, G., Fierro, A., Rezende, M. C., Sepulveda-Boza, S. and Reyes-Parada, M. (2005) Heteroarylisopropylamines as MAO inhibitors. Bioorg. Med. Chem. 13, 4450-4457. https://doi.org/10.1016/j.bmc.2005.04.045
- van den Buuse, M., Ruimschotel, E., Martin, S., Risbrough, V. B. and Halberstadt, A. L. (2011) Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT1A receptor knockout mice: implications for schizophrenia. Neuropharmacology 61, 209-216. https://doi.org/10.1016/j.neuropharm.2011.04.001
- VanGuilder, H. D., Vrana, K. E. and Freeman, W. M. (2008) Twentyfive years of quantitative PCR for gene expression analysis. Biotechniques 44, 619-626. https://doi.org/10.2144/000112776
- Willins, D. L. and Meltzer, H. Y. (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a headtwitch response in rats. J. Pharmacol. Exp. Ther. 282, 699-706.
- Winter, J. C. (2009) Hallucinogens as discriminative stimuli in animals: LSD, phenethylamines, and tryptamines. Psychopharmacology 203, 251-263. https://doi.org/10.1007/s00213-008-1356-8
Cited by
- Two newly-emerging substituted phenethylamines MAL and BOD induce differential psychopharmacological effects in rodents vol.34, pp.9, 2020, https://doi.org/10.1177/0269881120936458
- 25B‐NBOMe, a novel N ‐2‐methoxybenzyl‐phenethylamine (NBOMe) derivative, may induce rewarding and reinforcing effects via a dopaminergic mechanism: Evidence of abuse potent vol.25, pp.6, 2020, https://doi.org/10.1111/adb.12850