DOI QR코드

DOI QR Code

Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors

  • Lee, Sae Rom (Department of Life Science, Ewha Womans University) ;
  • An, Eun Jung (Department of Life Science, Ewha Womans University) ;
  • Kim, Jaesang (Department of Life Science, Ewha Womans University) ;
  • Bae, Yun Soo (Department of Life Science, Ewha Womans University)
  • Received : 2019.11.08
  • Accepted : 2019.11.20
  • Published : 2019.12.30

Abstract

Several recent studies have reported that reactive oxygen species (ROS), superoxide anion and hydrogen peroxide (H2O2), play important roles in various cellular signaling networks. NADPH oxidase (Nox) isozymes have been shown to mediate receptor-mediated ROS generation for physiological signaling processes involved in cell growth, differentiation, apoptosis, and fibrosis. Detectable intracellular levels of ROS can be induced by the electron leakage from mitochondrial respiratory chain as well as by activation of cytochrome p450, glucose oxidase and xanthine oxidase, leading to oxidative stress. The up-regulation and the hyper-activation of NADPH oxidases (Nox) also likely contribute to oxidative stress in pathophysiologic stages. Elevation of the renal ROS level through hyperglycemia-mediated Nox activation results in the oxidative stress which induces a damage to kidney tissues, causing to diabetic nephropathy (DN). Nox inhibitors are currently being developed as the therapeutics of DN. In this review, we summarize Nox-mediated ROS generation and development of Nox inhibitors for therapeutics of DN treatment.

Keywords

References

  1. Ameziane-El-Hassani, R., Morand, S., Boucher, J. L., Frapart, Y. M., Apostolou, D., Agnandji, D., Gnidehou, S., Ohayon, R., Noel-Hudson, M. S., Francon, J., Lalaoui, K., Virion, A. and Dupuy, C. (2005) Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J. Biol. Chem. 280, 30046-30054. https://doi.org/10.1074/jbc.M500516200
  2. Aoyama, T., Paik, Y. H., Watanabe, S., Laleu, B., Gaggini, F., Fioraso-Cartier, L., Molango, S., Heitz, F., Merlot, C., Szyndralewiez, C., Page, P. and Brenner, D. A. (2012) Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316-2327. https://doi.org/10.1002/hep.25938
  3. Badal, S. S. and Danesh, F. R. (2014) New insights into molecular mechanisms of diabetic kidney disease. Am. J. Kidney Dis. 63, S63-S83. https://doi.org/10.1053/j.ajkd.2013.10.047
  4. Bae, Y. S., Oh, H., Rhee, S. G. and Yoo, Y. D. (2011) Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491-509. https://doi.org/10.1007/s10059-011-0276-3
  5. Banfi, B., Malgrange, B., Knisz, J., Steger, K., Dubois-Dauphin, M. and Krause, K. H. (2004a) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J. Biol. Chem. 279, 46065-46072. https://doi.org/10.1074/jbc.M403046200
  6. Banfi, B., Molnar, G., Maturana, A., Steger, K., Hegedus, B., Demaurex, N. and Krause, K. H. (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J. Biol. Chem. 276, 37594-37601. https://doi.org/10.1074/jbc.M103034200
  7. Banfi, B., Tirone, F., Durussel, I., Knisz, J., Moskwa, P., Molnar, G. Z., Krause, K. H. and Cox, J. A. (2004b) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J. Biol. Chem. 279, 18583-18591. https://doi.org/10.1074/jbc.M310268200
  8. Bedard, K. and Krause, K. H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245-313. https://doi.org/10.1152/physrev.00044.2005
  9. Block, K. and Gorin, Y. (2012) Aiding and abetting roles of NOX oxidases in cellular transformation. Nat. Rev. Cancer 12, 627-637. https://doi.org/10.1038/nrc3339
  10. Bokoch, G. M. and Zhao, T. (2006) Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxid. Redox Signal. 8, 1533-1548. https://doi.org/10.1089/ars.2006.8.1533
  11. Caramori, M. L., Parks, A. and Mauer, M. (2013) Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J. Am. Soc. Nephrol. 24, 1175-1181. https://doi.org/10.1681/ASN.2012070739
  12. Cha, J. J., Min, H. S., Kim, K. T., Kim, J. E., Ghee, J. Y., Kim, H. W., Lee, J. E., Han, J. Y., Lee, G., Ha, H. J., Bae, Y. S., Lee, S. R., Moon, S. H., Lee, S. C., Kim, G., Kang, Y. S. and Cha, D. R. (2017) APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab. Invest. 97, 419-431. https://doi.org/10.1038/labinvest.2017.2
  13. Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527-605. https://doi.org/10.1152/physrev.1979.59.3.527
  14. Cheng, G., Diebold, B. A., Hughes, Y. and Lambeth, J. D. (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J. Biol. Chem. 281, 17718-17726. https://doi.org/10.1074/jbc.M512751200
  15. Cheng, G., Ritsick, D. and Lambeth, J. D. (2004) Nox3 regulation by NOXO1, p47phox, and p67phox. J. Biol. Chem. 279, 34250-34255. https://doi.org/10.1074/jbc.M400660200
  16. Choi, H., Leto, T. L., Hunyady, L., Catt, K. J., Bae, Y. S. and Rhee, S. G. (2008) Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidase. J. Biol. Chem. 283, 255-267. https://doi.org/10.1074/jbc.M708000200
  17. Dorotea, D., Kwon, G., Lee, J. H., Saunders, E., Bae, Y. S., Moon, S. H., Lee, S. J., Cha, D. R. and Ha, H. (2018) A pan-NADPH oxidase inhibitor ameliorates kidney injury in type 1 diabetic rats. Pharmacology 102, 180-189. https://doi.org/10.1159/000491398
  18. Dutta, S. and Rittinger, K. (2010) Regulation of NOXO1 activity through reversible interactions with p22(phox) and NOXA1. PLoS ONE 5, e10478. https://doi.org/10.1371/journal.pone.0010478
  19. Finegold, A. A., Shatwell, K. P., Segal, A. W., Klausner, R. D. and Dancis, A. (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J. Biol. Chem. 271, 31021-31024. https://doi.org/10.1074/jbc.271.49.31021
  20. Forbes, J. M. and Cooper, M. E. (2013) Mechanisms of diabetic complications. Physiol. Rev. 93, 137-188. https://doi.org/10.1152/physrev.00045.2011
  21. Forbes, J. M., Cooper, M. E., Oldfield, M. D. and Thomas, M. C. (2003) Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 14, S254-S258. https://doi.org/10.1097/01.ASN.0000077413.41276.17
  22. Gaggini, F., Laleu, B., Orchard, M., Fioraso-Cartier, L., Cagnon, L., Houngninou-Molango, S., Gradia, A., Duboux, G., Merlot, C., Heitz, F., Szyndralewiez, C. and Page, P. (2011) Design, synthesis and biological activity of original pyrazolo-pyrido-diazepine,-pyrazine and-oxazine dione derivatives as novel dual Nox4/Nox1 inhibitors. Bioorg. Med. Chem. 19, 6989-6999. https://doi.org/10.1016/j.bmc.2011.10.016
  23. Geiszt, M., Lekstrom, K., Witta, J. and Leto, T. L. (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J. Biol. Chem. 278, 20006-20012. https://doi.org/10.1074/jbc.M301289200
  24. Gorin, Y., Cavaglieri, R. C., Khazim, K., Lee, D. Y., Bruno, F., Thakur, S., Fanti, P., Szyndralewiez, C., Barnes, J. L., Block, K. and Abboud, H. E. (2015) Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am. J. Physiol. Renal Physiol. 308, F1276-F1287. https://doi.org/10.1152/ajprenal.00396.2014
  25. Green, D. E., Murphy, T. C., Kang, B. Y., Kleinhenz, J. M., Szyndralewiez, C., Page, P., Sutliff, R. L. and Hart, C. M. (2012) The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation. Am. J. Respir. Cell Mol. Biol. 47, 718-726. https://doi.org/10.1165/rcmb.2011-0418OC
  26. Groemping, Y., Lapouge, K., Smerdon, S. J. and Rittinger, K. (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113, 343-355. https://doi.org/10.1016/S0092-8674(03)00314-3
  27. Heng, L. Z., Comyn, O., Peto, T., Tadros, C., Ng, E., Sivaprasad, S. and Hykin, P. G. (2013) Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet. Med. 30, 640-650. https://doi.org/10.1111/dme.12089
  28. Hofmann, M. A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P., Neurath, M. F., Slattery, T., Beach, D., McClary, J., Nagashima, M., Morser, J., Stern, D. and Schmidt, A. M. (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889-901. https://doi.org/10.1016/S0092-8674(00)80801-6
  29. Holterman, C. E., Read, N. C. and Kennedy, C. R. (2015) Nox and renal disease. Clin. Sci. (Lond.) 128, 465-481. https://doi.org/10.1042/CS20140361
  30. Jha, J. C., Banal, C., Chow, B. S., Cooper, M. E. and Jandeleit-Dahm, K. (2016) Diabetes and kidney disease: role of oxidative stress. Antioxid. Redox Signal. 25, 657-684. https://doi.org/10.1089/ars.2016.6664
  31. Jha, J. C., Gray, S. P., Barit, D., Okabe, J., El-Osta, A., Namikoshi, T., Thallas-Bonke, V., Wingler, K., Szyndralewiez, C., Heitz, F., Touyz, R. M., Cooper, M. E., Schmidt, H. H. and Jandeleit-Dahm, K. A. (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1237-1254. https://doi.org/10.1681/ASN.2013070810
  32. Jiang, F., Liu, G. S., Dusting, G. J. and Chan, E. C. (2014) NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses. Redox. Biol. 2, 267-272. https://doi.org/10.1016/j.redox.2014.01.012
  33. Joo, J. H., Oh, H., Kim, M., An, E. J., Kim, R. K., Lee, S. Y., Kang, D. H., Kang, S. W., Keun Park, C., Kim, H., Lee, S. J., Lee, D., Seol, J. H. and Bae, Y. S. (2016) NADPH oxidase 1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteasomal degradation of NoxO1 in colon cancer cells. Cancer Res. 76, 855-865. https://doi.org/10.1158/0008-5472.CAN-15-1512
  34. Kawahara, T., Ritsick, D., Cheng, G. and Lambeth, J. D. (2005) Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1-and Nox2-dependent reactive oxygen generation. J. Biol. Chem. 280, 31859-31869. https://doi.org/10.1074/jbc.M501882200
  35. Khan, A., Petropoulos, I. N., Ponirakis, G. and Malik, R. A. (2017) Visual complications in diabetes mellitus: beyond retinopathy. Diabet. Med. 34, 478-484. https://doi.org/10.1111/dme.13296
  36. Kikuchi, H., Hikage, M., Miyashita, H. and Fukumoto, M. (2000) NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene 254, 237-243. https://doi.org/10.1016/S0378-1119(00)00258-4
  37. Ko, E., Choi, H., Kim, B., Kim, M., Park, K. N., Bae, I. H., Sung, Y. K., Lee, T. R., Shin, D. W. and Bae, Y. S. (2014) Testosterone stimulates Duox1 activity through GPRC6A in skin keratinocytes. J. Biol. Chem. 289, 28835-28845. https://doi.org/10.1074/jbc.M114.583450
  38. Koya, D., Haneda, M., Nakagawa, H., Isshiki, K., Sato, H., Maeda, S., Sugimoto, T., Yasuda, H., Kashiwagi, A., Ways, D. K., King, G. L. and Kikkawa, R. (2000) Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 14, 439-447. https://doi.org/10.1096/fasebj.14.3.439
  39. Kudin, A. P., Bimpong-Buta, N. Y., Vielhaber, S., Elger, C. E. and Kunz, W. S. (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279, 4127-4135. https://doi.org/10.1074/jbc.M310341200
  40. Kwon, G., Uddin, M. J., Lee, G., Jiang, S., Cho, A., Lee, J. H., Lee, S. R., Bae, Y. S., Moon, S. H., Lee, S. J., Cha, D. R. and Ha, H. (2017) A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget 8, 74217-74232. https://doi.org/10.18632/oncotarget.18540
  41. Lal, M. A., Brismar, H., Eklof, A. C. and Aperia, A. (2002) Role of oxidative stress in advanced glycation end product-induced mesangial cell activation. Kidney Int. 61, 2006-2014. https://doi.org/10.1046/j.1523-1755.2002.00367.x
  42. Laleu, B., Gaggini, F., Orchard, M., Fioraso-Cartier, L., Cagnon, L., Houngninou-Molango, S., Gradia, A., Duboux, G., Merlot, C., Heitz, F., Szyndralewiez, C. and Page, P. (2010) First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 53, 7715-7730. https://doi.org/10.1021/jm100773e
  43. Lambeth, J. D. and Neish, A. S. (2014) Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu. Rev. Pathol. 9, 119-145. https://doi.org/10.1146/annurev-pathol-012513-104651
  44. Lassegue, B., San Martin, A. and Griendling, K. K. (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 110, 1364-1390. https://doi.org/10.1161/CIRCRESAHA.111.243972
  45. Lassegue, B., Sorescu, D., Szocs, K., Yin, Q., Akers, M., Zhang, Y., Grant, S. L., Lambeth, J. D. and Griendling, K. K. (2001) Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redoxsensitive signaling pathways. Circ. Res. 88, 888-894. https://doi.org/10.1161/hh0901.090299
  46. Lee, J. H., Joo, J. H., Kim, J., Lim, H. J., Kim, S., Curtiss, L., Seong, J. K., Cui, W., Yabe-Nishimura, C. and Bae, Y. S. (2013) Interaction of NADPH oxidase 1 with Toll-like receptor 2 induces migration of smooth muscle cells. Cardiovasc. Res. 99, 483-493. https://doi.org/10.1093/cvr/cvt107
  47. Lee, M. Y., San Martin, A., Mehta, P. K., Dikalova, A. E., Garrido, A. M., Datla, S. R., Lyons, E., Krause, K. H., Banfi, B., Lambeth, J. D., Lassegue, B. and Griendling, K. K. (2009) Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injuryinduced neointimal formation. Arterioscler. Thromb. Vasc. Biol. 29, 480-487. https://doi.org/10.1161/ATVBAHA.108.181925
  48. Leto, T. L., Morand, S., Hurt, D. and Ueyama, T. (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid. Redox Signal. 11, 2607-2619. https://doi.org/10.1089/ars.2009.2637
  49. Lv, M., Chen, Z., Hu, G. and Li, Q. (2015) Therapeutic strategies of diabetic nephropathy: recent progress and future perspectives. Drug Discov. Today 20, 332-346. https://doi.org/10.1016/j.drudis.2014.10.007
  50. Lyle, A. N., Deshpande, N. N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., Papaharalambus, C., Lassegue, B. and Griendling, K. K. (2009) Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ. Res. 105, 249-259. https://doi.org/10.1161/CIRCRESAHA.109.193722
  51. Mason, R. M. and Wahab, N. A. (2003) Extracellular matrix metabolism in diabetic nephropathy. J. Am. Soc. Nephrol. 14, 1358-1373. https://doi.org/10.1097/01.ASN.0000065640.77499.D7
  52. Molitch, M. E., DeFronzo, R. A., Franz, M. J., Keane, W. F., Mogensen, C. E., Parving, H. H., Steffes, M. W. and American Diabetes, A. (2004) Nephropathy in diabetes. Diabetes Care 27, S79-S83. https://doi.org/10.2337/diacare.27.2007.S79
  53. Neumann, A., Schinzel, R., Palm, D., Riederer, P. and Munch, G. (1999) High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaB activation and cytokine expression. FEBS Lett. 453, 283-287. https://doi.org/10.1016/S0014-5793(99)00731-0
  54. Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., Yorek, M. A., Beebe, D., Oates, P. J., Hammes, H. P., Giardino, I. and Brownlee, M. (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787-790. https://doi.org/10.1038/35008121
  55. Osicka, T. M., Yu, Y., Panagiotopoulos, S., Clavant, S. P., Kiriazis, Z., Pike, R. N., Pratt, L. M., Russo, L. M., Kemp, B. E., Comper, W. D. and Jerums, G. (2000) Prevention of albuminuria by aminoguanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C. Diabetes 49, 87-93. https://doi.org/10.2337/diabetes.49.1.87
  56. Palatini, P. (2012) Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre-hypertension. Nephrol. Dial. Transplant. 27, 1708-1714. https://doi.org/10.1093/ndt/gfs037
  57. Papadopoulou-Marketou, N., Chrousos, G. P. and Kanaka-Gantenbein, C. (2017) Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab. Res. Rev. 33, doi: 10.1002/dmrr.2841.
  58. Park, H. S., Park, D. and Bae, Y. S. (2006) Molecular interaction of NADPH oxidase 1 with betaPix and nox organizer 1. Biochem. Biophys. Res. Commun. 339, 985-990. https://doi.org/10.1016/j.bbrc.2005.11.108
  59. Reidy, K., Kang, H. M., Hostetter, T. and Susztak, K. (2014) Molecular mechanisms of diabetic kidney disease. J. Clin. Invest. 124, 2333-2340. https://doi.org/10.1172/JCI72271
  60. Rocco, M. V. and Berns, J. S. (2009) KDOQI in the era of global guidelines. Am. J. Kidney Dis. 54, 781-787. https://doi.org/10.1053/j.ajkd.2009.08.001
  61. Said, G. (2007) Diabetic neuropathy--a review. Nat. Clin. Pract. Neurol. 3, 331-340. https://doi.org/10.1038/ncpneuro0504
  62. Schmidt, A. M., Hori, O., Chen, J. X., Li, J. F., Crandall, J., Zhang, J., Cao, R., Yan, S. D., Brett, J. and Stern, D. (1995) Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Invest. 96, 1395-1403. https://doi.org/10.1172/JCI118175
  63. Schroder, K., Helmcke, I., Palfi, K., Krause, K. H., Busse, R. and Brandes, R. P. (2007) Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 27, 1736-1743. https://doi.org/10.1161/ATVBAHA.107.142117
  64. Segal, A. W., West, I., Wientjes, F., Nugent, J. H., Chavan, A. J., Haley, B., Garcia, R. C., Rosen, H. and Scrace, G. (1992) Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem. J. 284, 781-788. https://doi.org/10.1042/bj2840781
  65. Silbiger, S., Crowley, S., Shan, Z., Brownlee, M., Satriano, J. and Schlondorff, D. (1993) Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int. 43, 853-864. https://doi.org/10.1038/ki.1993.120
  66. Singh, V. P., Bali, A., Singh, N. and Jaggi, A. S. (2014) Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 18, 1-14. https://doi.org/10.4196/kjpp.2014.18.1.1
  67. Suh, Y. A., Arnold, R. S., Lassegue, B., Shi, J., Xu, X., Sorescu, D., Chung, A. B., Griendling, K. K. and Lambeth, J. D. (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79-82. https://doi.org/10.1038/43459
  68. Sumimoto, H. (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 275, 3984. https://doi.org/10.1111/j.1742-4658.2008.06546.x
  69. Sumimoto, H., Hata, K., Mizuki, K., Ito, T., Kage, Y., Sakaki, Y., Fukumaki, Y., Nakamura, M. and Takeshige, K. (1996) Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J. Biol. Chem. 271, 22152-22158. https://doi.org/10.1074/jbc.271.36.22152
  70. Sumimoto, H., Sakamoto, N., Nozaki, M., Sakaki, Y., Takeshige, K. and Minakami, S. (1992) Cytochrome b558, a component of the phagocyte NADPH oxidase, is a flavoprotein. Biochem. Biophys. Res. Commun. 186, 1368-1375. https://doi.org/10.1016/S0006-291X(05)81557-8
  71. Tervaert, T. W., Mooyaart, A. L., Amann, K., Cohen, A. H., Cook, H. T., Drachenberg, C. B., Ferrario, F., Fogo, A. B., Haas, M., de Heer, E., Joh, K., Noel, L. H., Radhakrishnan, J., Seshan, S. V., Bajema, I. M., Bruijn, J. A. and Renal Pathology, S. (2010) Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21, 556-563. https://doi.org/10.1681/ASN.2010010010
  72. Thallas-Bonke, V., Thorpe, S. R., Coughlan, M. T., Fukami, K., Yap, F. Y., Sourris, K. C., Penfold, S. A., Bach, L. A., Cooper, M. E. and Forbes, J. M. (2008) Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57, 460-469. https://doi.org/10.2337/db07-1119
  73. Thomas, M. C., Brownlee, M., Susztak, K., Sharma, K., Jandeleit-Dahm, K. A., Zoungas, S., Rossing, P., Groop, P. H. and Cooper, M. E. (2015) Diabetic kidney disease. Nat. Rev. Dis. Primers 1, 15018. https://doi.org/10.1038/nrdp.2015.18
  74. Thomas, M. C., Weekes, A. J., Broadley, O. J., Cooper, M. E. and Mathew, T. H. (2006) The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NEFRON study). Med. J. Aust. 185, 140-144. https://doi.org/10.5694/j.1326-5377.2006.tb00499.x
  75. Ueno, N., Takeya, R., Miyano, K., Kikuchi, H. and Sumimoto, H. (2005) The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J. Biol. Chem. 280, 23328-23339. https://doi.org/10.1074/jbc.M414548200
  76. Ueyama, T., Geiszt, M. and Leto, T. L. (2006) Involvement of Rac1 in activation of multicomponent Nox1-and Nox3-based NADPH oxidases. Mol. Cell. Biol. 26, 2160-2174. https://doi.org/10.1128/MCB.26.6.2160-2174.2006
  77. Vinik, A. I., Nevoret, M. L., Casellini, C. and Parson, H. (2013) Diabetic neuropathy. Endocrinol. Metab. Clin. North Am. 42, 747-787. https://doi.org/10.1016/j.ecl.2013.06.001
  78. Wingler, K., Wunsch, S., Kreutz, R., Rothermund, L., Paul, M. and Schmidt, H. H. (2001) Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic. Biol. Med. 31, 1456-1464. https://doi.org/10.1016/S0891-5849(01)00727-4
  79. Xu, Y., Ruan, S., Xie, H. and Lin, J. (2010) Role of LOX-1 in Ang II-induced oxidative functional damage in renal tubular epithelial cells. Int. J. Mol. Med. 26, 679-690.
  80. Yang, Y., Zhang, Y., Cuevas, S., Villar, V. A., Escano, C., L, D. A., Yu, P., Grandy, D. K., Felder, R. A., Armando, I. and Jose, P. A. (2012) Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase. Free Radic. Biol. Med. 53, 437-446. https://doi.org/10.1016/j.freeradbiomed.2012.05.015
  81. Yu, P., Han, W., Villar, V. A., Yang, Y., Lu, Q., Lee, H., Li, F., Quinn, M. T., Gildea, J. J., Felder, R. A. and Jose, P. A. (2014) Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol. 2, 570-579. https://doi.org/10.1016/j.redox.2014.01.020

Cited by

  1. FOXO3a accumulation and activation accelerate oxidative stress‐induced podocyte injury vol.34, pp.10, 2020, https://doi.org/10.1096/fj.202000783r
  2. On the Clinical Pharmacology of Reactive Oxygen Species vol.72, pp.4, 2020, https://doi.org/10.1124/pr.120.019422
  3. Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress vol.2021, 2021, https://doi.org/10.1155/2021/6631805
  4. Terminalia catappa Extract Palliates Redox Imbalance and Inflammation in Diabetic Rats by Upregulating Nrf-2 Gene vol.2021, 2020, https://doi.org/10.1155/2021/9778486
  5. NADH/NAD+ Redox Imbalance and Diabetic Kidney Disease vol.11, pp.5, 2021, https://doi.org/10.3390/biom11050730
  6. Prominent and emerging anti-diabetic molecular targets vol.29, pp.5, 2021, https://doi.org/10.1080/1061186x.2020.1859517
  7. Roles and Therapeutic Implications of Endoplasmic Reticulum Stress and Oxidative Stress in Cardiovascular Diseases vol.10, pp.8, 2020, https://doi.org/10.3390/antiox10081167
  8. A natural product of acteoside ameliorate kidney injury in diabetes db/db mice and HK‐2 cells via regulating NADPH/oxidase‐TGF‐β/Smad signaling pathway vol.35, pp.9, 2020, https://doi.org/10.1002/ptr.7196
  9. Activated Histone Acetyltransferase p300/CBP-Related Signalling Pathways Mediate Up-Regulation of NADPH Oxidase, Inflammation, and Fibrosis in Diabetic Kidney vol.10, pp.9, 2020, https://doi.org/10.3390/antiox10091356