DOI QR코드

DOI QR Code

Deep Learning in MR Motion Correction: a Brief Review and a New Motion Simulation Tool (view2Dmotion)

  • Lee, Seul (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Jung, Soozy (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Jung, Kyu-Jin (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Dong-Hyun (Department of Electrical and Electronic Engineering, Yonsei University)
  • Received : 2020.10.15
  • Accepted : 2020.11.11
  • Published : 2020.12.31

Abstract

With the development of deep-learning techniques, the application of deep learning in MR imaging processing seems to be growing. Accordingly, deep learning has also been introduced in motion correction and seemed to work as well as do conventional motion-compensation methods. In this article, we review the motion-correction methods based on deep learning, focusing especially on the motion-simulation methods adopted. We then propose a new motion-simulation tool, which we call view2Dmotion.

Keywords

References

  1. Zaitsev M, Maclaren J, Herbst M. Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging 2015;42:887-901 https://doi.org/10.1002/jmri.24850
  2. Heiland S. From A as in aliasing to Z as in zipper: artifacts in MRI. Clin Neuroradiol 2008;18:25-36 https://doi.org/10.1007/s00062-008-8003-y
  3. Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O. Highest resolution in vivo human brain MRI using prospective motion correction. PLoS One 2015;10:e0133921 https://doi.org/10.1371/journal.pone.0133921
  4. Gallichan D, Marques JP, Gruetter R. Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T. Magn Reson Med 2016;75:1030-1039 https://doi.org/10.1002/mrm.25670
  5. Stadler A, Schima W, Ba-Ssalamah A, Kettenbach J, Eisenhuber E. Artifacts in body MR imaging: their appearance and how to eliminate them. Eur Radiol 2007;17:1242-1255 https://doi.org/10.1007/s00330-006-0470-4
  6. Armanious K, Gatidis S, Nikolaou K, Yang B, Kustner T. Retrospective correction of rigid and non-rigid MR motion artifacts using GANs. IEEE 16th International Symposium on Biomedical Imaging (ISBI), 2019
  7. Noel P, Bammer R, Reinhold C, Haider MA. Parallel imaging artifacts in body magnetic resonance imaging. Can Assoc Radiol J 2009;60:91-98 https://doi.org/10.1016/j.carj.2009.02.036
  8. Hamilton J, Franson D, Seiberlich N. Recent advances in parallel imaging for MRI. Prog Nucl Magn Reson Spectrosc 2017;101:71-95 https://doi.org/10.1016/j.pnmrs.2017.04.002
  9. Fu ZW, Wang Y, Grimm RC, et al. Orbital navigator echoes for motion measurements in magnetic resonance imaging. Magn Reson Med 1995;34:746-753 https://doi.org/10.1002/mrm.1910340514
  10. McGee KP, Felmlee JP, Manduca A, Riederer SJ, Ehman RL. Rapid autocorrection using prescan navigator echoes. Magn Reson Med 2000;43:583-588 https://doi.org/10.1002/(SICI)1522-2594(200004)43:4<583::AID-MRM13>3.0.CO;2-B
  11. Johnson PM, Taylor R, Whelan T, Thiessen JD, Anazodo U, Drangova M. Rigid-body motion correction in hybrid PET/MRI using spherical navigator echoes. Phys Med Biol 2019;64:08NT03 https://doi.org/10.1088/1361-6560/ab10b2
  12. Tisdall MD, Hess AT, Reuter M, Meintjes EM, Fischl B, van der Kouwe AJ. Volumetric navigators for prospective motion correction and selective reacquisition in neuroanatomical MRI. Magn Reson Med 2012;68:389-399 https://doi.org/10.1002/mrm.23228
  13. Mendes J, Kholmovski E, Parker DL. Rigid-body motion correction with self-navigation MRI. Magn Reson Med 2009;61:739-747 https://doi.org/10.1002/mrm.21883
  14. Schulz J, Siegert T, Reimer E, et al. An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7T. MAGMA 2012;25:443-453 https://doi.org/10.1007/s10334-012-0320-0
  15. Zaitsev M, Dold C, Sakas G, Hennig J, Speck O. Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 2006;31:1038-1050 https://doi.org/10.1016/j.neuroimage.2006.01.039
  16. Qin L, van Gelderen P, Derbyshire JA, et al. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Magn Reson Med 2009;62:924-934 https://doi.org/10.1002/mrm.22076
  17. Todd N, Josephs O, Callaghan MF, Lutti A, Weiskopf N. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking. Neuroimage 2015;113:1-12 https://doi.org/10.1016/j.neuroimage.2015.03.013
  18. Ooi MB, Krueger S, Thomas WJ, Swaminathan SV, Brown TR. Prospective real-time correction for arbitrary head motion using active markers. Magn Reson Med 2009;62:943-954 https://doi.org/10.1002/mrm.22082
  19. Maclaren J, Herbst M, Speck O, Zaitsev M. Prospective motion correction in brain imaging: a review. Magn Reson Med 2013;69:621-636 https://doi.org/10.1002/mrm.24314
  20. Callaghan MF, Josephs O, Herbst M, Zaitsev M, Todd N, Weiskopf N. An evaluation of prospective motion correction (PMC) for high resolution quantitative MRI. Front Neurosci 2015;9:97 https://doi.org/10.3389/fnins.2015.00097
  21. Maclaren J, Armstrong BS, Barrows RT, et al. Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain. PLoS One 2012;7:e48088 https://doi.org/10.1371/journal.pone.0048088
  22. White N, Roddey C, Shankaranarayanan A, et al. PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 2010;63:91-105 https://doi.org/10.1002/mrm.22176
  23. Herbst M, Maclaren J, Lovell-Smith C, et al. Reproduction of motion artifacts for performance analysis of prospective motion correction in MRI. Magn Reson Med 2014;71:182-190 https://doi.org/10.1002/mrm.24645
  24. Johnson PM, Liu J, Wade T, Tavallaei MA, Drangova M. Retrospective 3D motion correction using spherical navigator echoes. Magn Reson Imaging 2016;34:1274-1282 https://doi.org/10.1016/j.mri.2016.06.006
  25. Kochunov P, Lancaster JL, Glahn DC, et al. Retrospective motion correction protocol for high-resolution anatomical MRI. Hum Brain Mapp 2006;27:957-962 https://doi.org/10.1002/hbm.20235
  26. Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR Jr. Spherical navigator echoes for full 3D rigid body motion measurement in MRI. Magn Reson Med 2002;47:32-41 https://doi.org/10.1002/mrm.10012
  27. Haskell MW, Cauley SF, Wald LL. TArgeted Motion Estimation and Reduction (TAMER): data consistency based motion mitigation for MRI using a reduced model joint optimization. IEEE Trans Med Imaging 2018;37:1253-1265 https://doi.org/10.1109/tmi.2018.2791482
  28. Lee D, Lee J, Ko J, Yoon J, Ryu K, Nam Y. Deep learning in MR image processing. Investig Magn Reson Imaging 2019;23:81-99 https://doi.org/10.13104/imri.2019.23.2.81
  29. Wang C, Liang Y, Wu Y, Zhao S, Du YP. Correction of out-of-FOV motion artifacts using convolutional neural network. Magn Reson Imaging 2020;71:93-102 https://doi.org/10.1016/j.mri.2020.05.004
  30. Pawar K, Chen Z, Shah NJ, Egan GF. Motion correction in MRI using deep convolutional neural network. ISMRM Scientific Meeting & Exhibition, 2018:1174
  31. Pawar K, Chen Z, Shah NJ, Egan GF. MoCoNet: motion correction in 3D MPRAGE images using a convolutional neural network approach. arXiv preprint arXiv:1807.10831, 2018
  32. Pawar K, Chen Z, Shah NJ, Egan GF. Suppressing motion artefacts in MRI using an Inception-ResNet network with motion simulation augmentation. NMR Biomed 2019:e4225
  33. Sommer K, Brosch T, Wiemker R, et al. Correction of motion artifacts using a multi-resolution fully convolutional neural network. ISMRM Scientific Meeting & Exhibition, 2018:1175
  34. Duffy BA, Zhao L, Toga A, Kim H. Deep learning based motion artifact correction improves the quality of cortical reconstructions. ISMRM Scientific Meeting & Exhibition, 2019:4426
  35. Tamada D, Kromrey ML, Ichikawa S, Onishi H, Motosugi U. Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MR imaging of the liver. Magn Reson Med Sci 2020;19:64-76 https://doi.org/10.2463/mrms.mp.2018-0156
  36. Haskell MW, Cauley SF, Bilgic B, et al. Network accelerated motion estimation and reduction (NAMER): convolutional neural network guided retrospective motion correction using a separable motion model. Magn Reson Med 2019;82:1452-1461 https://doi.org/10.1002/mrm.27771
  37. Godenschweger F, Kagebein U, Stucht D, et al. Motion correction in MRI of the brain. Phys Med Biol 2016;61:R32-56 https://doi.org/10.1088/0031-9155/61/5/R32
  38. Hedley M, Yan H. Motion artifact suppression: a review of post-processing techniques. Magn Reson Imaging 1992;10:627-635 https://doi.org/10.1016/0730-725X(92)90014-Q
  39. Hashemi RH. Bradley WGJ, Lisanti CJ. MRI: the basics. 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 2004:201-202
  40. Armanious K, Jiang C, Fischer M, et al. MedGAN: medical image translation using GANs. Comput Med Imaging Graph 2020;79:101684 https://doi.org/10.1016/j.compmedimag.2019.101684
  41. Kustner T, Armanious K, Yang J, Yang B, Schick F, Gatidis S. Retrospective correction of motion-affected MR images using deep learning frameworks. Magn Reson Med 2019;82:1527-1540 https://doi.org/10.1002/mrm.27783
  42. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and ComputerAssisted Invervention, 2015:234-241
  43. Lee H, Ryu K, Nam Y, Lee J, Kim DH. Reduction of respiratory motion artifact in C-spine imaging using deep learning: is substitution of navigator possible- ISMRM Scientific Meeting & Exhibition, 2018:2660
  44. Kromrey ML, Tamada D, Johno H, et al. Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network. Eur Radiol 2020;30:5923-5932 https://doi.org/10.1007/s00330-020-07006-1
  45. Johnson PM, Drangova M. Motion correction in MRI using deep learning. ISMRM Scientific Meeting & Exhibition, 2018:4098
  46. Duffy BA, Zhang W, Tang H, et al. Retrospective correction of motion artifact affected structural MRI images using deep learning of simulated motion. 1st Conference on Medical Imaging with Deep Learning (MIDL), 2018
  47. Armanious K, Jiang C, Fischer M, et al. MedGAN: medical image translation using GANs. arXiv preprint arXiv:1806.06397, 2018
  48. Usman M, Latif S, Asim M, Lee BD, Qadir J. Retrospective motion correction in multishot MRI using Generative Adversarial Network. Sci Rep 2020;10:4786 https://doi.org/10.1038/s41598-020-61705-9
  49. Dou Q, Feng X, Wang Z, Weller D, Meyer C. Deep learning motion compensation for Cartesian and spiral trajectories. ISMRM Scientific Meeting & Exhibition, 2019
  50. Bydder M, Ghodrati VK, Ali FA, Hu P. Deep CNN for outlier detection: a complementary tool to low-rank based methods for reducing motion artefacts. ISMRM Scientific Meeting & Exhibition, 2019:0934
  51. Vahedipour K, Shah NJ, Stocker T. Fast MR simulations with JEMRIS 2.1 - disclosing the secrets of MRI sequence development. ISMRM Scientific Meeting & Exhibition, 2009:3039
  52. Liu F, Kijowski R, Block WF. MRiLab: performing fast 3D parallel MRI numerical simulation on a simple PC. ISMRM Scientific Meeting & Exhibition, 2013:2072
  53. Rodriguez-Molinero A, Narvaiza L, Ruiz J, Galvez-Barron C. Normal respiratory rate and peripheral blood oxygen saturation in the elderly population. J Am Geriatr Soc 2013;61:2238-2240 https://doi.org/10.1111/jgs.12580