DOI QR코드

DOI QR Code

Intraoperative Neurophysiological Monitoring and Neuromuscular Anesthesia Depth Monitoring

수술 중 신경계 추적 감시 검사와 근 이완 마취 심도의 측정

  • Kim, Sang-Hun (Department of Neurology, Kangbuk Samsung Hospital) ;
  • Park, Soon-Bu (Physiologic Diagnostic Laboratory, Seoul National University Bundang Hospital) ;
  • Kang, Hyo-Chan (Department of Biomedical Laboratory Science, Daegu Hanny University) ;
  • Park, Sang-Ku (Department of Neurosurgery, Konkuk University Medical Center)
  • 김상훈 (강북삼성병원 신경과) ;
  • 박순부 (분당서울대학교병원 특수검사부) ;
  • 강효찬 (대구한의대학교 임상병리학과) ;
  • 박상구 (건국대학교병원 신경외과)
  • Received : 2020.11.03
  • Accepted : 2020.11.10
  • Published : 2020.12.31

Abstract

Deep blocking of consciousness alone does not prevent a reaction to severe stimuli, and copious amounts of pain medication do not guarantee unconsciousness. Therefore, anesthesia must satisfy both: the loss of consciousness as well as muscle relaxation. Muscle relaxants improve the intra-bronchial intubation, surgical field of vision, and operating conditions, while simultaneously reducing the dose of inhalation or intravenous anesthesia. Muscle relaxants are also very important for breathing management during controlled mechanical ventilation during surgery. Excessive dosage of such muscle relaxants may therefore affect neurological examinations during surgery, but an insufficient dosage will result in movement of the patient during the procedure. Hence, muscle relaxation anesthesia depth and neurophysiological monitoring during surgery are closely related. Using excessive muscle relaxants is disadvantageous, since neurophysiological examinations during surgery could be hindered, and eliminating the effects of complete muscle relaxation after surgery is challenging. In the operation of neurophysiological monitoring during the operation, the anesthesiologist administers muscle relaxant based on what standard, it is hoped that the examination will be performed more smoothly by examining the trends in the world as well as domestic and global trends in maintaining muscle relaxant.

마취는 의식의 차단 역할을 하는 주 마취제와 감각, 운동, 반사의 차단을 하는 부 마취제인 근이완제로 구분된다. 깊은 의식의 차단만으로는 심한 자극에 대한 반응을 막을 수 없고, 다량의 진통제만으로는 무의식을 보장할 수 없다. 그러므로 마취는 동시에 두 가지를 모두 만족시켜야 한다. 근 이완제는 흡입 또는 정맥마취제의 투여 용량을 감소시키면서 기관지내 삽입관, 수술 시야 및 수술적 환경(operating conditions)을 향상시킬 수 있으며, 수술 중 기계적 조절 환기(controlled mechanical ventilation) 시 호흡 관리를 위하여 매우 중요하다. 이러한 근이완제는 투여 용량이 과다하면 수술 중 신경 검사가 안 되는 영향을 줄 수 있고, 투여 용량이 부족하게 되면 환자가 수술 중 움직일 수 있어서 근 이완 마취 심도와 수술 중 감시 검사는 밀접한 관계가 있다. 근 이완제를 많이 사용하면, 수술 중 신경생리학적 검사가 원활하게 되지 않는 단점과 수술 이후에 완전히 근 이완효과를 제거하기 어렵다는 단점도 갖고 있다. 수술 중 감시 검사를 하는 수술에서 마취과에서는 어떠한 기준으로 근 이완제를 투여하며 유지하는지에 대하여 국내뿐만 아니라 전 세계적인 동향을 살펴 봄으로써 보다 원활한 수술 중 신경 검사가 되길 바란다.

Keywords

References

  1. Griffith HR, Johnson GE. The use of curare in general anesthesia. Anesthesiology. 1942;3:418-420. https://doi.org/10.1097/00000542-194207000-00006
  2. Beecher HK, Todd DP. A study of the deaths associated with anesthesia and surgery: based on a study of 599, 548 anesthesias in ten institutions 1948-1952, inclusive. Ann Surg. 1954;140:2-35. https://doi.org/10.1097/00000658-195407000-00001
  3. Madsen MV, Staehr-Rye AK, Claudius C, Gatke MR. Is deep neuromuscular blockade beneficial in laparoscopic surgery? Yes, probably. Acta Anaesthesiol Scand. 2016;60:710-716. https://doi.org/10.1111/aas.12698
  4. Meakin GH. Role of muscle relaxants in pediatric anesthesia. Curr Opin Anaesthesiol. 2007;20:227-231. https://doi.org/10.1097/ACO.0b013e328108f430
  5. Ali HH, Utting JE, Gray TC. Quantitative assessment of residual antidepolarizing block. I. Br J Anaesth. 1971;43:473-477. https://doi.org/10.1093/bja/43.5.473
  6. Seo HJ, Lee YK, Lee SS, Kim KS, Yang HS. A survey of postoperative residual neuromuscular block and neuromuscular monitoring. Anesth Pain Med. 2010;5:70-74. https://doi.org/10.17085/apm.2018.13.1.47
  7. Fruergaard K, Viby-Mogensen J, Berg H, El-Mahdy A. Tactile evaluation of the response to double burst stimulation decreases, but does not eliminate, the problem of postoperative residual paralysis. Acta Anaesthesiol Scand. 1998;42:1168-1174. https://doi.org/10.1111/j.1399-6576.1998.tb05271.x
  8. Mortensen CR, Berg H, El-Mahdy A, Viby-Mogensen J. Perioperative monitoring of neuromuscular transmission using acceleromyography prevents residual neuromuscular block following pancuronium. Acta Anaesthesiol Scand. 1995;39:797-801. https://doi.org/10.1111/j.1399-6576.1995.tb04173.x
  9. Shorten GD, Merk H, Sieber T. Perioperative train-of-four monitoring and residual curarization. Can J Anaesth. 1995;42:711-715. https://doi.org/10.1007/BF03012670
  10. Bevan DR. Monitoring and reversal of neuromuscular block. Am J Health Syst Pharm. 1999;56(11 Suppl 1):10-13. https://doi.org/10.1093/ajhp/56.S10
  11. Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg. 2010;111:120-128. https://doi.org/10.1213/ANE.0b013e3181da832d
  12. Berg H, Roed J, Viby-Mogensen J, Mortensen CR, Engbaek J, Skovgaard LT, et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand. 1997;41:1095-1103. https://doi.org/10.1111/j.1399-6576.1997.tb04851.x
  13. Debaene B, Plaud B, Dilly MP, Donati F. Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology. 2003;98:1042-1048. https://doi.org/10.1097/00000542-200305000-00004
  14. Baillard C, Gehan G, Reboul-Marty J, Larmignat P, Samama CM, Cupa M. Residual curarization in the recovery room after vecuronium. Br J Anaesth. 2000;84:394-395. https://doi.org/10.1093/oxfordjournals.bja.a013445
  15. Lee JS, Han SY, Cho SH, Chung JW, Kim SH, Chai WS, et al. Postoperative residual curarization in the recovery room after vecuronium or rocuronium use. Anesth Pain Med. 2006;1:101-105.
  16. Mortensen CR, Berg H, El-Mahdy A, Viby-Mogensen J. Perioperative monitoring of neuromuscular transmission using acceleromyography prevents residual neuromuscular block following pancuronium. Acta Anaesthesiol Scand. 1995;39:797-801. https://doi.org/10.1111/j.1399-6576.1995.tb04173.x
  17. Scott MJ, Baldini G, Fearon KC, Feldheiser A, Feldman LS, Gan TJ, et al. Enhanced Recovery After Surgery (ERAS) for gastrointestinal surgery, part 1: pathophysiological considerations. Acta Anaesthesiol Scand. 2015;59:1212-1231. https://doi.org/10.1111/aas.12601
  18. Baillard C, Clec'h C, Catineau J, Salhi F, Gehan G, Cupa M, et al. Postoperative residual neuromuscular block: a survey of management. Br J Anaesth. 2005;95:622-626. https://doi.org/10.1093/bja/aei240
  19. Lee SH. What anesthesiologists ask to know and should know about the neuromuscular monitoring: an updated review. Anesth Pain Med. 2017;12;1-8. https://doi.org/10.17085/apm.2017.12.1.1
  20. Christie TH, Churchill-Davidson HC. The St. Thomas's Hospital nerve stimulator in the diagnosis of prolonged apnoea. Lancet. 1958;1:776. https://doi.org/10.1016/s0140-6736(58)91583-6
  21. Ali HH, Utting JE, Gray TC. Quantitative assessment of residual antidepolarizing block. I. Br J Anaesth. 1971;43:473-477. https://doi.org/10.1093/bja/43.5.473
  22. Park SK, Lim SH, Park CW, Park JW, Kim DJ, Kang JH, et al. Intra-operative neurological monitoring and anesthesia. Korean J Clin Lab Sci. 2012;44:184-198.
  23. Fuchs-Buder T, Claudius C, Skovgaard LT, Eriksson LI, Mirakhur RK, Viby-Mogensen J. Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision. Acta Anaesthesiol Scand. 2007;51:789-808. https://doi.org/10.1111/j.1399-6576.2007.01352.x
  24. Michaud G, Trager G, Deschamps S, Hemmerling TM. Dominance of the hand does not change the phonomyographic measurement of neuromuscular block at the adductor pollicis muscle. Anesth Analg. 2005;100:718-721. https://doi.org/10.1213/01.ANE.0000144067.42615.AD
  25. Claudius C, Skovgaard LT, Viby-Mogensen J. Arm-to-arm variation when evaluating neuromuscular block: an analysis of the precision and the bias and agreement between arms when using mechanomyography or acceleromyography. Br J Anaesth. 2010;105:310-317. https://doi.org/10.1093/bja/aeq162
  26. Lee S, Yang HS, Sasakawa T, Khan MA, Khatri A, Kaneki M, et al. Immobilization with atrophy induces de novo expression of neuronal nicotinic α7 acetylcholine receptors in muscle contributing to neurotransmission. Anesthesiology. 2014;120:76-85. https://doi.org/10.1097/ALN.0000000000000025
  27. Kim KS, Jeon JW, Koh MS, Shim JH, Cho SY, Suh JK. The duration of immobilization causes the changing pharmacodynamics of mivacurium and rocuronium in rabbits. Anesth Analg. 2003;96:438-442. https://doi.org/10.1097/00000539-200302000-00027.
  28. Kim KS, Shim JC, Jun JH, Lee KH, Chung CW. Rabbits treated with chronic isepamicin are resistant to mivacurium and rocuronium. Anesth Analg. 1999;88:654-658. https://doi.org/10.1097/00000539-199903000-00034
  29. Kim DW, Joshi GP, White PF, Johnson ER. Interactions between mivacurium, rocuronium, and vecuronium during general anesthesia. Anesth Analg. 1996;83:818-822. https://doi.org/10.1097/00000539-199610000-00029
  30. Rohling RG, Rentsch KM, Beck-Schimmer B, Fuchs-Buder T. Risk of recurarization during retransfusion of autologous blood withdrawn after injection of muscle relaxants: a comparison of rocuronium and mivacurium. J Clin Anesth. 2003;15:85-90. https://doi.org/10.1016/s0952-8180(02)00519-6
  31. Brauer A, Waeschle RM, Heise D, Perl T, Hinz J, Quintel M, et al. Preoperative prewarming as a routine measure. First experiences. Anaesthesist. 2010;59:842-850. https://doi.org/10.1007/s00101-010-1772-0
  32. Heier T, Caldwell JE. Impact of hypothermia on the response to neuromuscular blocking drugs. Anesthesiology. 2006;104:1070-80. https://doi.org/10.1097/00000542-200605000-00025
  33. Kim YB, Lee KC, Kim GS, and Kim HS. The effects of peripheral hypothermia on monitoring the recovery from deep neuromuscular blockade with rocuronium. Anesth Pain Med. 2011;6:164-168.
  34. Naguib M, Kopman AF, Lien CA, Hunter JM, Lopez A, Brull SJ. A survey of current management of neuromuscular block in the United States and Europe. Anesth Analg. 2010;111:110-119. https://doi.org/10.1213/ANE.0b013e3181c07428
  35. Chacko CJ, Haldar M. Survey on neuromuscular management. J Anaesthesiol Clin Pharmacol. 2016;32:122. https://doi.org/10.4103/0970-9185.173366
  36. Grayling M, Sweeney BP. Recovery from neuromuscular blockade: a survey of practice. Anaesthesia. 2007;62:806-809. https://doi.org/10.1111/j.1365-2044.2007.05101.x
  37. Seo HJ, Lee YK, Lee SS, Kim KS, Yang HS. A survey of postoperative residual neuromuscular block and neuromuscular monitoring. Anesth Pain Med. 2010;5:70-74.
  38. Checketts MR, Alladi R, Ferguson K, Gemmell L, Handy JM, Klein AA, et al. Recommendations for standards of monitoring during anaesthesia and recovery 2015: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2016;71:85-93. https://doi.org/10.1111/anae.13316
  39. Kim KS, Lew SH, Cho HY, Cheong MA. Residual paralysis induced by either vecuronium or rocuronium after reversal with pyridostigmine. Anesth Analg. 2002;95:1656-1660. https://doi.org/10.1097/00000539-200212000-00033.
  40. Martin R, Bourdua I, Theriault S, Tetrault JP, Pilote M. Neuromuscular monitoring: does it make a difference? Can J Anaesth. 1996;43:585-588. https://doi.org/10.1007/BF03011771
  41. Feldheiser A, Aziz O, Baldini G, Cox BP, Fearon KC, Feldman LS, et al. Enhanced recovery after surgery (ERAS) for gastrointestinal surgery, part 2: consensus statement for anaesthesia practice. Acta Anaesthesiol Scand. 2016;60:289-334. https://doi.org/10.1111/aas.12651
  42. Urriza J, Arranz-Arranz B, Ulkatan S, Tellez MJ, Deletis V. Integrative action of axonal membrane explored by trains of subthreshold stimuli applied to the peripheral nerve. Clin Neurophysiol. 2016;127:1707-1709. https://doi.org/10.1016/j.clinph. 2015.07.024
  43. Park SK, Hyun SC, Lim SH, Park CW, Park JW, Kim DJ, et al. Basic techniques of intraoperative neurophysiological monitoring. Korean J Clin Lab Sci. 2013;45:77-85.
  44. Cha JK, Kim SH. The concepts of montage in somatosensory evoked potentials. Korean J Clin Neurophysiol. 1999;1:160-167.
  45. American Clinical Neurophysiology Society. Guideline 11C: Recommended standards for intraoperative monitoring of auditory evoked potentials [Internet]. Milwauke: American Clinical Neurophysiology Society; 2019 [cited 2019 Aug 13]. Available from: https://www.acns.org/pdf/guidelines/Guideline-11C.pdf
  46. Lim SH, Park SB, Moon DY, Kim JS, Choi YD, Park SK. Principles of intraoperative neurophysiological monitoring with insertion and removal of electrodes. Korean J Clin Lab Sci. 2019;51:453-461. https://doi.org/10.15324/kjcls.2019.51.4.453

Cited by

  1. 수술중신경계감시검사에서 발생하는 인공산물의 종류와 해결 방법 vol.53, pp.1, 2021, https://doi.org/10.15324/kjcls.2021.53.1.122