DOI QR코드

DOI QR Code

Molecular epidemiologic trends of norovirus and rotavirus infection and relation with climate factors: Cheonan, Korea, 2010-2019

노로바이러스 및 로타바이러스 감염의 역학 및 기후요인과의 관계: 천안시, 2010-2019

  • Oh, Eun Ju (Department of Medical Laser Cooperative Curriculum, Dankook University Graduate School of Medicine) ;
  • Kim, Jang Mook (Department of Health Administration, Dankook University College of Health Sciences) ;
  • Kim, Jae Kyung (Department of Biomedical Laboratory Science, Dankook University College of Health Sciences)
  • 오은주 (단국대학교 의과대학 의학레이저협동과정 대학원) ;
  • 김장묵 (단국대학교 보건복지대학 보건행정학과) ;
  • 김재경 (단국대학교 보건복지대학 임상병리학과)
  • Received : 2020.10.25
  • Accepted : 2020.12.20
  • Published : 2020.12.28

Abstract

Background: Viral infection outbreaks are emerging public health concerns. They often exhibit seasonal patterns that could be predicted by the application of big data and bioinformatic analyses. Purpose: The purpose of this study was to identify trends in diarrhea-causing viruses such as rotavirus (Gr.A), norovirus G-I, and norovirus G-II in Cheonan, Korea. The identified related factors of diarrhea-causing viruses may be used to predict their trend and prevent their infections. Method: A retrospective analysis of 4,009 fecal samples from June 2010 to December 2019 was carried out at Dankook University Hospital in Cheonan. Reverse transcription-PCR (RT-PCR) was employed to identify virus strains. Information about seasonal patterns of infection was extracted and compared with local weather data. Results: Out of the 4,009 fecal samples tested using multiplex RT-PCR (mRT-PCR), 985 were positive for infection with Gr.A, G-I, and G-II. Out of these 985 cases, 95.3% (n = 939) were under 10 years of age. Gr.A, G-I, and G-II showed high infection rates in patients under 10 years of age. Student's t-test showed a significant correlation between the detection rate of Gr.A and the relative humidity. The detection rate of G-II significantly correlated with wind-chill temperature. Conclusion: Climate factors differentially modulate rotavirus and norovirus infection patterns. These observations provide novel insights into the seasonal impact on the pathogenesis of Gr.A, G-I, and G-II.

바이러스감염으로 인한 설사는 전 세계적으로 공중 보건의 주요 문제이며 사망률의 큰 부분을 차지하고 있지만 기후데이터를 이용하여 분석한 연구는 많지 않다. 따라서 본 연구는 설사를 유발하는 바이러스인 Rotavirus Gr.A, Norovirus G-I & GII의 감염과 기후와의 인과관계를 분석하여 조기진단과 치료를 용이하게 하고 계절성 질환을 더욱 관리하고 예방하는데 기여하고자 하였다. 2010년 6월부터 2019년 12월까지 단국대학교 병원에서 시행한 대변 시료 4,009개의 설사바이러스 6종의 멀티플렉스 역전사 PCR(mRT-PCR)검사결과와 다양한 기후 요인 중 체감온도, 상대습도, 일조율과의 상관관계를 후향적으로 분석하였다. 4,009 개의 대변 샘플 중 985 개는 Rotavirus Gr.A, Norovirus G-I & GII 감염에 대해 양성이었다. 이 985 건 중 95.3 % (n = 939)는 10 세 미만으로 Rotavirus Gr.A, Norovirus G-I & GII는 10 세 미만 환자에서 높은 감염률을 보였다. 우리는 기상 빅데이터와 연령, 시기별 감염분석 등에 기초하여 Rotavirus Gr.A의 감염이 상대 습도에 따라 유의한 상관 관계가 있음을 확인하였고 Norovirus G-II의 감염은 체감 온도와 유의한 상관 관계가 있음을 확인하였다. 본 연구는 기후요인에 따른 Rotavirus Gr.A, Norovirus G-I & GII 감염의 분포에 대한 이해도를 향상시킴으로써 바이러스성 설사질환과 관련된 보건정책의 설정이나 계절적 영향에 대한 새로운 통찰력을 제공하는데 유용한 자료가 될 것으로 기대한다.

Keywords

References

  1. Y. Kang, S. Park, H. Koh & S. Kim. (2018). Correlation between the occurrence of acute gastroenteritis in children and regional temperature at a tertiary hospital emergency department in Korea. Pediatric Emergency Medicine Journal, 5(1), 19-24. DOI: 10.22470/pemj.2018.00192
  2. J. I. Song, M. J. Park, Y. M. Lee, C. D. Kim, H. K. Lee, S. S. Kim & J. H. Lee. (2017). Comparison of clinical features between noroviral and rotaviral gastroenteritis, Soonchunhyang Medical Science, 23(1), 29-33. DOI: 10.15746/sms.17.006
  3. J. O. Park, J. S. Jeon, & J. K. Kim. (2019). Epidemiologic Trends of Diarrhea-causing Virus Infection Analyzed by Multiplex Reverse Transcription PCR in Cheonan, Korea, 2010-2018, Microbiology and Biotechnology Letters, 47(2), 317-322. https://doi.org/10.4014/mbl.1811.11007
  4. N. Ouedraogo, S. M. Ngangas, I. J. Bonkoungou, A. B. Tiendrebeogo, K. A. Traore, I. Sanou, A. S. Traore & N. Barro. (2017). Temporal distribution of gastroenteritis viruses in Ouagadougou, Burkina Faso: seasonality of rotavirus. BMC Public Health, 17, 274. DOI: 10.1186/s12889-017-4161-7
  5. M. Ghazani, G. FitzGerald, W. Hu, G. Toloo and Z. Xu. (2018). Temperature Variability and Gastrointestinal Infections: A Review of Impacts and Future Perspectives. International Journal of Environmental Research and Public Health. 15(4),766. DOI: 10.3390/ijerph15040766
  6. Y. S. Kim & J. Y. Chung. (2020). Molecular detection and epidemiology of etiologic agents among children with acute gastroenteritis at a secondary hospital from 2015 to 2018, Pediatric Infection Vaccine. 7(2):e13. DOI: 10.14776/piv.2020.27.e13
  7. J. K. Kim & J. W. Kim. (2014). Molecular epidemiologic trends of diarrhea-causing virus infection from clinical specimens in Cheonan, Korea, in 20102012, Journal of Clinical Laboratory Analysis 28, 47-51. https://doi.org/10.1002/jcla.21642
  8. S. H. Lee & S. J. Yang (2017). Factors associated with rotavirus vaccination behavior among mothers of infants: using the Health Belief Model, Journal of Korean Public Health Nursing, 31(1), 34-46. https://doi.org/10.5932/JKPHN.2017.31.1.34
  9. S. S. Chenar & Z. Deng. (2017). Environmental indicators for human norovirus Outbreaks, International Journal of Environmental Health Research, 27 (1), 40-51. DOI: 10.1080/09603123.2016.1257705
  10. J. O. Park, J. S. Jeon & J. K. Kim. (2019). Epidemiologic Trends of diarrhea-causing virus infection analyzed by multiplex reverse transcription PCR in Cheonan, Korea, 2010-2018, Microbiology Biotechnology Letters, 47(2), 317-322. DOI: 10.4014/mbl.1811.11007
  11. GBD 2016 Diarrhoeal disease collaborators. (2017). Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015, Lancet Infectious Diseases, 17, 909-948. DOI: 10.1016/S1473-3099(17)30276-1.
  12. A. J. Hall, B. A. Lopman, D. C. Payne, M. M. Patel, P. A. Gastaaduy, J. Vinj & U. S. Parashar. (2013). Norovirus disease in the United States, Emerging Infectious Diseases 19 (8), 1198-2105. DOI: 10.3201/eid1908.130465
  13. K. M. Guarines, R. P. G Mendes, J. J. F. de Magalhes, L. Pena. (2019). Norovirus-associated gastroenteritis, Pernambuco, Northeast Brazil, 2014-2017, Journal of Medical Virology, 92(8), 1093-1101. DOI: 10.1002/jmv.25631
  14. J. M. Yoon, T. H. Han, S. W. Yoon, Y. J. Kim & S. H. Oh. (2018). Changes in the occurrence of rotavirus gastroenteritis before and after the introduction of rotavirus vaccine among hospitalized pediatric patients and estimates of rotavirus vaccine effectiveness, Pediatric Infection Vaccine, 25, 26-34. DOI:10.14776/piv.2018.25.1.26
  15. Y. G. Karim, M. K. Ijaz, S. A. Sattar, C. M. Johnson-Lussenburg. (1985). Effect of relative humidity on the airborne survival of rhinovirus-14, Canadian Journal of Microbiology, 31, 1058-1061. DOI: 10.1139/m85-199
  16. W. S. Miller & M. S. Artenstein. (1967). Aerosol stability of three acute respiratory disease viruses. Proceedings of the Society for Experimental Biology and Medicine,125, 222-227. DOI: 10.3181/00379727-125-32054.
  17. C. B. Hall. (2007). The spread of influenza and other respiratory viruses: complexities and conjectures. Clinical Infectious Diseases 45, 353-359. DOI: 10.1086/519433
  18. S. K. Kim, H. Sung, & M. N. Kim. (2018). Kinetic studies and infection control of respiratory viruses, Korean Journal of Healthcare-Associated Infection Control and Prevention, 23(1):17. DOI: 10.14192/kjhaicp.2018.23.1.1
  19. C. S. Yen, Y. C. Huang, C. J. Chen, S. S. Shie, S. L. Yang, C. G. Huang, K. C. Tsao, C. H. Chiu, Y. C. Hsieh, C. Y. Kuo, K. Y. Huang, & T. Y. Lin. (2020). Detection of norovirus and rotavirus among inpatients with acute gastroenteritis in a medical center in northern Taiwan, 2013-2018, Journal of Microbiology, Immunology and Infection, S1684-1182(20), 301-572. DOI: 10.1016/j.jmii.2020.06.016
  20. K. Lee, D. S. Kim, & M. S. Chong. (2018). Multiplex PCR based epidemiological study for the causes of acute diarrheal disease in adults living in Jeju island, Annals of Clinical Microbiology, 21(1). DOI: 10.5145/ACM.2018.21.1.1
  21. M. R. Choi & Y. S. Kwon. (2016). The comparison of benign convulsion with noroviral and rotaviral gastroenteritis, Journal of the Korean Child Neurology Society 24(3), 95-101. https://doi.org/10.26815/jkcns.2016.24.3.95
  22. B. S. Goh, K. Y. Kim, S. W. Kim, & W. K. Lee. (2019). Correlation change between the detection rate of pathogens causing acute diarrheal disease and climatic elements in Daegu, Journal of Health Information & Statistics 44(1), 32-40. DOI: 10.21032/jhis.2019.44.1.32
  23. K. Muhsen, E. Kassem, U. Rubenstein, S. Goren, M. Ephros, L. M. Shulman & D. Cohen. (2019). No evidence of an increase in the incidence of norovirus gastroenteritis hospitalizations in young children after the introduction of universal rotavirus immunization in Israel, Human Vaccines & Immunotherapeutics, 15(6), 1284-1293. DOI: 10.1080/21645515.2019.1599522
  24. J. G. Kim & J. S. Kim. (2019). Characteristics of norovirus food poisoning outbreaks in Korea over the past ten years and the relation with climate factors, Journal of Environment and Health Science. 45(6), 622-629. DOI: 10.5668/JEHS.2019.45.6.622
  25. Y. S. Kim, K. H. Park, H. S. Hyang, C. Changsun, & G. J. Bahk. (2014). Correlations between climatic conditions and foodborne disease, Food Research International, 68, 24-30. DOI: 10.1016/j.foodres.2014.03.023
  26. I. Samandoulgou, R. Hammami, R. M. Rayas, I. Fliss, & J. Jean. (2015). Stability of secondary and tertiary structures of virus-like particles representing noroviruses: effects of pH, ionic strength, and temperature and implications for adhesion to surfaces. Applied Environmental Microbiology. 81, 7680-7686. DOI: 10.1128/AEM.01278-15
  27. G. S. Seo & S. C. Choi. (2010). Diarrhea (Based on acute infectious diarrhea) The Korean Journal of Medicine: 78, 49-53.
  28. P. Wang, B. W. Goggins, & Y. Y. Chan. (2018). A time-series study of the association of rainfall, relative humidity and ambient temperature with hospitalizations for rotavirus and norovirus infection among children in Hong Kong, Science of the Total Environment 643, 414-422. DOI: 10.1016/j.scitotenv.2018.06.189.