References
- Y. Lee. (2020) Incheon Airport, Expects losses this year due to COVID19 impact. Incheon Airport. https://www.airport.kr/co/ko/cmm/cmmBbsView.do?PAGEINDEX=1&SEARCH_STR=%EA%B1%B4%EC%84%A4%EC%82%AC%EC%97%85&FNCT_CODE=121&SEARCH_TYPE=all&SEARCH_FROM=2008.05.07&SEARCH_TO=2020.10.04&NTT_ID=24686
- J. S. Hong. (2018). Air transport demand forecasts of Gimhae Airport using time series big data. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 8(12), 899-908.
- S. W. Yoon & S. J. Jeong. (2014). Air Passenger Demand Forecasting and Baggage Carousel Expansion: Application to Incheon International Airport. Journal of Korean Society of Transportation, 32(4), 401-409. DOI : 10.7470/jkst.2014.32.4.401
- J. S. Hong. (2019). Air Demand Forecasting using Time Series Data: Focusing on Daegu International Airport. International Journal of Tourism and Hospitality Research, 34(3), 61-77.
- K. B. Kim & K. S. Hwang. (2012). A Study on the Demand Forecasting and Efficient Operation of Jeju National Airport using seasonal ARIMA model. Journal of the Korea Academia-Industrial cooperation Society, 13(8), 3381-3388. DOI : 10.5762/KAIS.2012.13.8.3381
- J. H. Lim & Y. R. Kim & Y. C. Choi & K. I. Kim. (2019). Domestic air demand forecast using cross-validation. Journal of the Korean Society for Aviation and Aeronautics, 27(1), 43-50. DOI : 10.12985/KSAA.2019.27.1.043
- Y. R. Kim. (2019). Forecast and Review of International Airline demand in Korea. Journal of the Korean Society for Aviation and Aeronautics, 27(3), 98-105. DOI : 10.12985/KSAA.2019.27.3.098
- J. W. Yu & J. Y. Choi. (2018). Outbound Air Travel Demand Forecasting Model with Unobserved Regional Characteristics. Korean Society Of Transportation, 36, 141-154. https://doi.org/10.7470/jkst.2018.36.2.141
- H. C. Cho & D. G. Kwag & J. H. Bae. (2019). Big Data-Based Air Demand Prediction for the Improvement of Airport Terminal Environment in Urban Area. Journal of the Korea Convergence Society, 10(8), 165-170. DOI : 10.15207/JKCS.2019.10.8.165
- H. H. Kim & J. W. Jeon & G. T. Yeo. (2018). Forecasting Model of Air Passenger Demand Using System Dynamics. Journal of Digital Convergence, 16(5), 137-143. DOI : 10.14400/JDC.2018.16.5.137
- W. H. K. Tsui & H. O. Balli & A. Gilbey & H. Gow. (2014). Forecasting of Hong Kong airport's passenger throughput. Tourism Management, 42, 62-76. DOI : 10.1016/j.tourman.2013.10.008
- Y. H. Li & H. Y. Han & X. Liu & C. Li. (2018). Passenger Flow Forecast of Sanya Airport Based on ARIMA Model. International Conference of Pioneering Computer Scientists, Engineers and Educators, 442-454. DOI : 10.1007/978-981-13-2206-8_36
- A. Samagaio & M. Wolters. (2010). Comparative analysis of government forecasts for the Lisbon Airport. Journal of Air Transport Management, 16(4), 213-217. DOI : 10.1016/j.jairtraman.2009.09.002
- H. Grubb & A. Mason. (2001). Long lead-time forecasting of UK air passengers by Holt-Winters methods with damped trend. International Journal of Forecasting, 17(1), 71-82. DOI : 10.1016/S0169-2070(00)00053-4
- S. H. Hong & S. H. Woo. (2012). The Study on Introducing Art & Culture Space to International Airport - Focusing on Incheon International Airport -. Journal of the Korea Institute of Interior Design, 21(6), 280-288.
- S. S. Choi & S. Y. Hwang & K. W. Kim & S. S. Park. (2017). The Research of the Effect of Passengers's Perception of Airport Service Quality to Airport Brand Image and National Identity : Focused on Passengers using Incheon Int'l Airport and Jeju Int'l Airport. Journal of Tourism and Leisure Research, 29(8), 211-231.
- B. K. Choi. (2007). A Study on the Perceived Service Quality and Satisfaction of Airport users of Incheon International Airport. Korea Trade Review, 32(2), 377-397.
- K. I. Stergiou. (1991). Short‐term fisheries forecasting: comparison of smoothing, ARIMA and regression techniques. Journal of Applied Ichthyology, 7(4), 193-204. DOI : 10.1111/j.1439-0426.1991.tb00597.x
- R. J. Hyndman & G. Athanasopoulos. (2018). Forecasting: principles and practice. https://otexts.com/fpp2/
- R. B. Cleveland & W. S. Cleveland & J. E. McRae & I. Terpenning. (1990). STL: A seasonal-trend decomposition. Journal of official statistics, 6(1), 3-73.
- S. S. Cho & B. C. Seong & Y. S. Son. (2016). Time series analysis using SAS/ETS. Seoul : Yulgok Publishing.
- T. M. Dantas & F. L. C. Oliveira & H. M. V. Repolho. (2017). Air transportation demand forecast through Bagging Holt Winters methods. Journal of Air Transport Management, 59, 116-123. DOI : 10.1016/j.jairtraman.2016.12.006
- G. E. Box & G. M. Jenkins & G. C. Reinsel & G. M. Ljung. (2015). Time series analysis: forecasting and control. Hoboken, New Jersey : John Wiley & Sons.
- M. Valipour. (2015). Long‐term runoff study using SARIMA and ARIMA models in the United States. Meteorological Applications, 22(3), 592-598. DOI : 10.1002/met.1491
- S. J. Taylor & B. Letham. (2018). Forecasting at scale. The American Statistician, 72(1), 37-45. DOI : 10.1080/00031305.2017.1380080
- R. J. Hyndman & A. B. Koehler. (2006). Another look at measures of forecast accuracy. International journal of forecasting, 22(4), 679-688. DOI : 10.1016/j.ijforecast.2006.03.001
- G. Athanasopoulos & D. Weatherburn. (2018). Forecasting male and female inmate numbers: A comparison of ARIMA and ETS modelling results. BOCSAR NSW Crime and Justice Bulletins, 12.
- C. H. Park & Y. K. Jeong. (2011). An Analysis of Economic Effects of Airline Industry on Regional Economy by Using the MRIO Analysis. The Korea Spatial Planning Review, 231-251.
- J. P. Lim. (2020). Crisis management and challenges of the air transport industry caused by COVID-19. International Journal of Tourism and Hospitality Research 34(7), 139-154. DOI : 10.21298/IJTHR.2020.7.34.7.139
- D. Y. Jeong & S. J. Lee. (2020). COVID-19, changes the future of travel. Issue & Diagnosis, 419, 1-25.