DOI QR코드

DOI QR Code

시계열 모형을 이용한 인천공항 이용객 수요 예측

Air passenger demand forecasting for the Incheon airport using time series models

  • 이지훈 (대구대학교 수리빅데이터학부) ;
  • 한혜림 (대구대학교 수리빅데이터학부) ;
  • 윤상후 (대구대학교 수리빅데이터학부)
  • Lee, Jihoon (Department of Computer Science and Statistics, Daegu University) ;
  • Han, Hyerim (Department of Computer Science and Statistics, Daegu University) ;
  • Yoon, Sanghoo (Department of Computer Science and Statistics, Daegu University)
  • 투고 : 2020.10.14
  • 심사 : 2020.12.20
  • 발행 : 2020.12.28

초록

인천공항은 대한민국으로 들어오거나 나가는 관문으로 나라의 이미지에 큰 영향을 미치므로 공항의 서비스 질을 유지하기 위해선 장기적인 공항 이용객 수 예측이 필요하다. 본 연구에서는 인천공항의 이용객 수요를 예측하기 위한 다양한 시계열 모형의 예측성능을 비교하였다. 인천공항 이용객 자료를 2002년 1월부터 2019년 12월까지 월 단위로 수집하여 살펴보면 일반적인 시계열자료에서 보이는 추세성과 계절성을 지니고 있다. 본 연구에서는 추세성과 계절성이 고려된 나이브 기법, 분해법, 지수 평활법, SARIMA, 그리고 PROPHET을 이용하여 단기, 중기, 장기예측 시계열모형을 비교하였다. 분석결과 단기예측은 최근 자료에 가중치를 준 지수 평활법이 우수했고 예상 2020년 연간 이용객 수는 약 7,350만명이다. 3년 후 인 2022년 중기예측은 정상성이 고려된 SARIMA모형이 우수하였고 예상 연간 이용객 수는 약 7,980만명이다. 4단계 인천공항 건설사업이 완료되는 2024년 예상 연간 여객수용 인원은 9,910만명이고 PROPHET모형이 가장 우수하였다.

The Incheon airport is a gateway to and from the Republic of Korea and has a great influence on the image of the country. Therefore, it is necessary to predict the number of airport passengers in the long term in order to maintain the quality of service at the airport. In this study, we compared the predictive performance of various time series models to predict the air passenger demand at Incheon Airport. From 2002 to 2019, passenger data include trend and seasonality. We considered the naive method, decomposition method, exponential smoothing method, SARIMA, PROPHET. In order to compare the capacity and number of passengers at Incheon Airport in the future, the short-term, mid-term, and long-term was forecasted by time series models. For the short-term forecast, the exponential smoothing model, which weighted the recent data, was excellent, and the number of annual users in 2020 will be about 73.5 million. For the medium-term forecast, the SARIMA model considering stationarity was excellent, and the annual number of air passengers in 2022 will be around 79.8 million. The PROPHET model was excellent for long-term prediction and the annual number of passengers is expected to be about 99.0 million in 2024.

키워드

참고문헌

  1. Y. Lee. (2020) Incheon Airport, Expects losses this year due to COVID19 impact. Incheon Airport. https://www.airport.kr/co/ko/cmm/cmmBbsView.do?PAGEINDEX=1&SEARCH_STR=%EA%B1%B4%EC%84%A4%EC%82%AC%EC%97%85&FNCT_CODE=121&SEARCH_TYPE=all&SEARCH_FROM=2008.05.07&SEARCH_TO=2020.10.04&NTT_ID=24686
  2. J. S. Hong. (2018). Air transport demand forecasts of Gimhae Airport using time series big data. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 8(12), 899-908.
  3. S. W. Yoon & S. J. Jeong. (2014). Air Passenger Demand Forecasting and Baggage Carousel Expansion: Application to Incheon International Airport. Journal of Korean Society of Transportation, 32(4), 401-409. DOI : 10.7470/jkst.2014.32.4.401
  4. J. S. Hong. (2019). Air Demand Forecasting using Time Series Data: Focusing on Daegu International Airport. International Journal of Tourism and Hospitality Research, 34(3), 61-77.
  5. K. B. Kim & K. S. Hwang. (2012). A Study on the Demand Forecasting and Efficient Operation of Jeju National Airport using seasonal ARIMA model. Journal of the Korea Academia-Industrial cooperation Society, 13(8), 3381-3388. DOI : 10.5762/KAIS.2012.13.8.3381
  6. J. H. Lim & Y. R. Kim & Y. C. Choi & K. I. Kim. (2019). Domestic air demand forecast using cross-validation. Journal of the Korean Society for Aviation and Aeronautics, 27(1), 43-50. DOI : 10.12985/KSAA.2019.27.1.043
  7. Y. R. Kim. (2019). Forecast and Review of International Airline demand in Korea. Journal of the Korean Society for Aviation and Aeronautics, 27(3), 98-105. DOI : 10.12985/KSAA.2019.27.3.098
  8. J. W. Yu & J. Y. Choi. (2018). Outbound Air Travel Demand Forecasting Model with Unobserved Regional Characteristics. Korean Society Of Transportation, 36, 141-154. https://doi.org/10.7470/jkst.2018.36.2.141
  9. H. C. Cho & D. G. Kwag & J. H. Bae. (2019). Big Data-Based Air Demand Prediction for the Improvement of Airport Terminal Environment in Urban Area. Journal of the Korea Convergence Society, 10(8), 165-170. DOI : 10.15207/JKCS.2019.10.8.165
  10. H. H. Kim & J. W. Jeon & G. T. Yeo. (2018). Forecasting Model of Air Passenger Demand Using System Dynamics. Journal of Digital Convergence, 16(5), 137-143. DOI : 10.14400/JDC.2018.16.5.137
  11. W. H. K. Tsui & H. O. Balli & A. Gilbey & H. Gow. (2014). Forecasting of Hong Kong airport's passenger throughput. Tourism Management, 42, 62-76. DOI : 10.1016/j.tourman.2013.10.008
  12. Y. H. Li & H. Y. Han & X. Liu & C. Li. (2018). Passenger Flow Forecast of Sanya Airport Based on ARIMA Model. International Conference of Pioneering Computer Scientists, Engineers and Educators, 442-454. DOI : 10.1007/978-981-13-2206-8_36
  13. A. Samagaio & M. Wolters. (2010). Comparative analysis of government forecasts for the Lisbon Airport. Journal of Air Transport Management, 16(4), 213-217. DOI : 10.1016/j.jairtraman.2009.09.002
  14. H. Grubb & A. Mason. (2001). Long lead-time forecasting of UK air passengers by Holt-Winters methods with damped trend. International Journal of Forecasting, 17(1), 71-82. DOI : 10.1016/S0169-2070(00)00053-4
  15. S. H. Hong & S. H. Woo. (2012). The Study on Introducing Art & Culture Space to International Airport - Focusing on Incheon International Airport -. Journal of the Korea Institute of Interior Design, 21(6), 280-288.
  16. S. S. Choi & S. Y. Hwang & K. W. Kim & S. S. Park. (2017). The Research of the Effect of Passengers's Perception of Airport Service Quality to Airport Brand Image and National Identity : Focused on Passengers using Incheon Int'l Airport and Jeju Int'l Airport. Journal of Tourism and Leisure Research, 29(8), 211-231.
  17. B. K. Choi. (2007). A Study on the Perceived Service Quality and Satisfaction of Airport users of Incheon International Airport. Korea Trade Review, 32(2), 377-397.
  18. K. I. Stergiou. (1991). Short‐term fisheries forecasting: comparison of smoothing, ARIMA and regression techniques. Journal of Applied Ichthyology, 7(4), 193-204. DOI : 10.1111/j.1439-0426.1991.tb00597.x
  19. R. J. Hyndman & G. Athanasopoulos. (2018). Forecasting: principles and practice. https://otexts.com/fpp2/
  20. R. B. Cleveland & W. S. Cleveland & J. E. McRae & I. Terpenning. (1990). STL: A seasonal-trend decomposition. Journal of official statistics, 6(1), 3-73.
  21. S. S. Cho & B. C. Seong & Y. S. Son. (2016). Time series analysis using SAS/ETS. Seoul : Yulgok Publishing.
  22. T. M. Dantas & F. L. C. Oliveira & H. M. V. Repolho. (2017). Air transportation demand forecast through Bagging Holt Winters methods. Journal of Air Transport Management, 59, 116-123. DOI : 10.1016/j.jairtraman.2016.12.006
  23. G. E. Box & G. M. Jenkins & G. C. Reinsel & G. M. Ljung. (2015). Time series analysis: forecasting and control. Hoboken, New Jersey : John Wiley & Sons.
  24. M. Valipour. (2015). Long‐term runoff study using SARIMA and ARIMA models in the United States. Meteorological Applications, 22(3), 592-598. DOI : 10.1002/met.1491
  25. S. J. Taylor & B. Letham. (2018). Forecasting at scale. The American Statistician, 72(1), 37-45. DOI : 10.1080/00031305.2017.1380080
  26. R. J. Hyndman & A. B. Koehler. (2006). Another look at measures of forecast accuracy. International journal of forecasting, 22(4), 679-688. DOI : 10.1016/j.ijforecast.2006.03.001
  27. G. Athanasopoulos & D. Weatherburn. (2018). Forecasting male and female inmate numbers: A comparison of ARIMA and ETS modelling results. BOCSAR NSW Crime and Justice Bulletins, 12.
  28. C. H. Park & Y. K. Jeong. (2011). An Analysis of Economic Effects of Airline Industry on Regional Economy by Using the MRIO Analysis. The Korea Spatial Planning Review, 231-251.
  29. J. P. Lim. (2020). Crisis management and challenges of the air transport industry caused by COVID-19. International Journal of Tourism and Hospitality Research 34(7), 139-154. DOI : 10.21298/IJTHR.2020.7.34.7.139
  30. D. Y. Jeong & S. J. Lee. (2020). COVID-19, changes the future of travel. Issue & Diagnosis, 419, 1-25.