DOI QR코드

DOI QR Code

상용화 추출제 및 이온성액체에 의한 염산의 용매추출

Solvent Extraction of Hydrochloric Acid Using Commercial Extractants and Synthesized Ionic Liquids

  • ;
  • 이만승 (목포대학교 공과대학 신소재공학과)
  • Nguyen, Viet Nhan Hoa (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • 투고 : 2020.11.13
  • 심사 : 2020.12.10
  • 발행 : 2020.12.30

초록

염산의 용매추출 및 탈거 거동을 조사하기 위해 상용화추출제인 LIX 63 단독 및 TEHA/ Cyanex 923/ Aliquat 336의 혼합추출제와 ALi-SCN과 ALi-PC 이온성액체를 사용하였다. 상기 추출제중에서 ALi-PC가 가장 높은 추출률(80%)을 보였으나 탈거가 어려웠다. 반면 LIX 63의 경우 추출률은 낮았으나, 탈거율은 81%로 가장 높았다. 옥탄올을 유기상에 첨가하면 염산 추출이 오히려 감소했다. 에탄올을 염산용액에 첨가하면 LIX 63, ALi-PC, ALi-SCN에 의한 염산의 추출과 탈거 거동이 크게 개선되었다.

The extraction and stripping of HCl from aqueous solutions by commercial extractants like LIX 63 and its mixture with TEHA/ Cyanex 923/ Aliquat 336 and ionic liquids like ALi-SCN, ALi-PC in kerosene was investigated. Among these extractants, ALi-PC showed the best extraction effectivity (above 80%), but it was difficult to strip HCl from the loaded phase. Although the extraction percentage of HCl by LIX 63 was not high, the stripping performance was above 81%. The addition of octanol to the organic phase led to negative effect on the extraction performance of HCl. The addition of C2H5OH into aqueous solutions significantly increased the extraction and stripping percentage of HCl by LIX 63, ALi-PC and ALi-SCN.

키워드

참고문헌

  1. McKinley, C., and Ghahreman, A., 2017 : Hydrochloric acid regeneration in hydrometallurgical processes: a review, Mineral Processing and Extractive Metallurgy, 127(3), pp.157-168. https://doi.org/10.1080/03719553.2017.1330839
  2. Van Weert, G., and Peek, E. M. L., 1992 : Reagent recovery in chloride hydrometallurgy - some missing links, Hydrometallurgy, 29(1-3), pp.513-526. https://doi.org/10.1016/0304-386X(92)90030-4
  3. Haghshenas, D. F., Darvishi, D., Rafieipour, H., et al., 2009 : A comparison between TEHA and Cyanex 923 on the separation and the recovery of sulfuric acid from aqueous solutions, Hydrometallurgy, 97(3-4), pp.173-179. https://doi.org/10.1016/j.hydromet.2009.02.006
  4. Shin, C. H., Kim, J. Y., Kim, J. Y., et al., 2009 : Recovery of nitric acid from waste etching solution using solvent extraction, J. Hazard. Mater., 163(2-3), pp.729-734. https://doi.org/10.1016/j.jhazmat.2008.07.019
  5. Le, M. N., Son, S. H., and Lee, M. S., 2019 : Extraction Behavior of Hydrogen Ion by an Ionic Liquid Mixture of Aliquat 336 and Cyanex 272 in Chloride Solution, Korean J. Met. Mater, 57(3), pp.162-169. https://doi.org/10.3365/kjmm.2019.57.3.162
  6. Banda, R., Nguyen, T. H. and Lee, M. S., 2013 : Recovery of HCl from chloride leach solution of spent HDS catalyst by solvent extraction, Chem Process Eng-Inz., 34(1), pp. 153-163. https://doi.org/10.2478/cpe-2013-0013
  7. Stas, J., and Alsawaf, H., 2016 : Liquid - liquid extraction of hydrochloric acid from aqueous solutions by Trin-dodecylamine and Tri-n-octylamine/diluents, Period, Polytech. Chem. Eng., 60(2), pp.130-135.
  8. Vieux, A. S. and Rutagengwa, N., 1976 : Organic phase species in the extraction of hydrochloric acid by triisooctylamine in various organic diluents, J Phys Chem., 80(12), pp.1283-1291. https://doi.org/10.1021/j100553a005
  9. Alguacil, F. J., and Lopez, F. A., 1996 : The extraction of mineral acids by the phosphine oxide Cyanex 923, Hydrometallurgy, 42(2), pp.245-255. https://doi.org/10.1016/0304-386X(95)00101-L
  10. Kesieme, U., Chrysanthou, A., Catulli, M. et al., 2018 : A review of acid recovery from acidic mining waste solutions using solvent extraction, J. Chem. Technol. Biotechnol. 93(12), pp.3374-3385. https://doi.org/10.1002/jctb.5728
  11. Le, M. N., Nguyen, T. H. and Lee, M. S., 2018 : Extraction and stripping behavior of hydrochloric acid from aqueous solution by Cyanex 923/TEHA and its mixtures, Geosystem Eng., 22(3), pp.1-9.
  12. Sarangi, K., Padhan, E., Sarma, P. V. R. B., et al., 2006 : Removal/recovery of hydrochloric acid using Alamine 336, Aliquat 336, TBP and Cyanex 923, Hydrometallurgy, 84(3-4), pp.125-129. https://doi.org/10.1016/j.hydromet.2006.03.063
  13. Fortuny, A., Coll, M. T. and Sastre, A. M., 2012 : Use of methyltrioctyl/decylammonium bis 2,4,4-(trimethylpentyl) phosphinate ionic liquid (ALiCY IL) on the boron extraction in chloride media, Sep. Purif. Technol., 97, pp.137-141. https://doi.org/10.1016/j.seppur.2012.02.037
  14. Castillo, J., Coll, M. T., Fortuny, A., et al., 2014 : Cu(II) extraction using quaternary ammonium and quaternary phosphonium based ionic liquid, Hydrometallurgy, 141, pp.89-96. https://doi.org/10.1016/j.hydromet.2013.11.001
  15. Truong, H., Lee, M. and Son, S., 2017: Extraction of Palladium(II) from Hydrochloric Acid Solutions by Solvent Extraction with Mixtures Containing Either Cyanex 301 or LIX 63, Metals, 7(12), pp.541. https://doi.org/10.3390/met7120541
  16. Wang, L. Y., and Lee, M. S., 2017 : Synergistic extraction of Co(II) over Ni(II) from chloride solutions by a mixture of Cyanex 301 and LIX 63, Geosystem Eng., 20(6), pp. 311-317. https://doi.org/10.1080/12269328.2017.1323680
  17. Preston, J. S., 1982 : Solvent Extraction of Cobalt(ll) and Nickel(ll) by a Quaternary Ammonium Thiocyanate, Sep Sci Technol., 17(15), pp.1697-1718. https://doi.org/10.1080/01496398208055652
  18. Vogel A. I., 1989 : Textbook of Quantitative Chemical Analysis, Longman Scientific & Technical, New York, 5th ed., pp.295-296.
  19. Sato, T., Sato, K. and Noguchi, Y., 2001 : Liquid-liquid extraction of iron (III) from hydrochloric acid solutions by ahydroxyoxime, Shigen-to-Sozai, 117(3), pp.226-229. https://doi.org/10.2473/shigentosozai.117.226
  20. Eyal, A. M. and Canari, R., 1995 : pH Dependence of Carboxylic and Mineral Acid Extraction by Amine-Based Extractants: Effects of pKa, Amine Basicity, and Diluent Properties, Ind. Eng. Chem. Res., 34(5), pp.1789-1798. https://doi.org/10.1021/ie00044a03
  21. Eyal, A. M., Hazan, B. and Bloch, R., 1991 : Recovery and concentration of strong mineral acids from dilute solutions through LLX. II. Reversible extraction with branchedchain amines, Solvent Extr. Ion Exch., 9(2), pp.211-222. https://doi.org/10.1080/07366299108918051
  22. Liu, Y. and Lee, M. S., 2016 : Effect of the diluents on the interaction between components in the binary mixtures of organophosphorus acid and tertiary amine, J. Mol. Liq., 220, pp.41-48. https://doi.org/10.1016/j.molliq.2016.04.067
  23. Rout, A., Venkatesan, K. A., Srinivasan, T. G. et al., 2012 : Ionic liquid extractants in molecular diluents: Extraction behavior of europium (III) in quarternary ammonium-based ionic liquids, Sep. Purif. Technol., 95, pp.26-31. https://doi.org/10.1016/j.seppur.2012.04.020
  24. Liu, Y., Jeon, H. S. and Lee, M. S., 2015 : Extraction of hydrochloric acid with binary mixtures of tertiary amine and organophosphorus acid and analysis of the interaction between the constituents of these mixtures, Hydrometallurgy, 155, pp.44-50. https://doi.org/10.1016/j.hydromet.2015.04.013
  25. Dupont, D., Depuydt, D. and Binnemans, K., 2015 : Overview of the Effect of Salts on Biphasic Ionic Liquid/Water Solvent Extraction Systems: Anion Exchange, Mutual Solubility, and Thermomorphic Properties, J. Phys. Chem. B, 119(22), pp.6747-6757. https://doi.org/10.1021/acs.jpcb.5b02980
  26. Tran, T. T. and Lee, M. S., 2020 : Interactions between ionic liquid (ALiCY) and TBP and their use for extraction of Co(II) and Ni(II) in hydrometallurgy, Korean J. Met. Mater., 58(6), pp.1-10. https://doi.org/10.3365/KJMM.2020.58.1.1