DOI QR코드

DOI QR Code

Simulation of Ammonia Reduction Effect by Hydroxylamine-oxidoreductase Enzyme Immobilized on the Surface of Water Pipe

수로관 표면 고정 히드록실아민-산화환원효소에 의한 암모니아 저감 효과 모사

  • Lee, Sang-Ryong (Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University) ;
  • Park, Jin-Won (Department of Chemical and Biomolecular Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology)
  • 이상룡 (동국대학교 바이오시스템대학 바이오환경과학과) ;
  • 박진원 (서울과학기술대학교 에너지바이오대학 화공생명공학과)
  • Received : 2020.08.27
  • Accepted : 2020.12.08
  • Published : 2020.12.30

Abstract

The immobilization of the hydroxylamine-oxidoreductase on the water channel surface was performed to investigate the efficacy of ammonia removal in turbulent flow. The reaction by this enzyme proceeds rapidly by converting hydroxylamine into nitrous acid. For the analysis of the effect, a dimensionless mass transfer governing equation was established with the physical properties based on room temperature. The ammonia diffusion coefficient in water and the kinematic viscosity coefficient of water were 2.45×10-9 ㎡/s and 1×10-6 ㎡/s, respectively. The distribution of ammonia concentration in the water was calculated with respect to the distance from the point at which exposure to ammonia began. The quantitative distribution with respect to the mixing depth was also found. Such a quantitative analysis can provide insight into whether the enzyme immobilized on the water channel surface can be effectively used for ammonia removal.

본 연구는 수로 표면에 고정된 히드록실아민-산화환원효소가 암모니아 흡수에 미치는 영향에 대하여 해석하였다. 이 효소에 의한 반응은 히드록실아민을 아질산으로 변화시키는 것으로서 신속하게 진행된다. 영향의 해석을 위하여, 무차원 물질전달 지배방정식이 수립되었고 상온 기준의 일정한 물성치들이 사용되었다. 물에서의 암모니아 확산계수와 물의 동점도계수는 각각 2.45×10-9 ㎡/s와 1×10-6 ㎡/s이었다. 물에서의 암모니아 농도 분포는 암모니아에 노출되기 시작하는 지점으로부터의 위치에 대하여 산출되었다. 혼합 깊이에 따른 정량적인 분포 또한 도출되었다. 이와 같은 정량적인 해석은 수로 표면에 고정화된 효소가 암모니아 제거에 효율적으로 이용될 수 있는지에 대한 통찰력을 제시할 수 있다.

Keywords

References

  1. Ministry of Environment, "Fine dust, what is it?", Administrative publications, April issue, p. 7. (2016).
  2. Irwin, J. G. and Williams, M. L., "Acid rain: Chemistry and transport", Environmental Pollution, 50(1-2), pp. 29-59. (1988). https://doi.org/10.1016/0269-7491(88)90184-4
  3. Sorensen, L. L., Granby, K., Nielsen, H. and Asman, W. A. H., "Diffusion scrubber technique used for measurements of atmospheric ammonia", Atmos. Environ., 28, pp. 3637-3645. (1994). https://doi.org/10.1016/1352-2310(94)00189-R
  4. Bjoerkman, E. and Sjostrom, K., "Decomposition of ammonia over dolomite and related-compounds", Energy & Fuels, 5, pp. 753-760. (1991). https://doi.org/10.1021/ef00029a023
  5. Lindstedt, R. P., Lockwood, F. C. and Selim, M. A., "A detailed kinetic study of ammonia oxidation", Combustion Sci & Technol., 108, pp. 231-254. (1995). https://doi.org/10.1080/00102209508960400
  6. Cedervall, P. E., Hooper, A. B. and Wilmot, C. M., "Crystallization and preliminary X-ray crystallographic analysis of a new crystal form of hydroxylamine oxidoreductase from Nitrosomonas europaea", Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 65, pp. 1296-1298. (2009). https://doi.org/10.1107/S1744309109046119
  7. Bird, R. B., Stewart, W. E., and Lightfoot, E. N. Transport phenomena, John Wiley & Sons, Inc., New York, pp. 657-667. (2006).
  8. Hanna, O. T. and Sandall, O. C., Computational methods in chemical engineering, Prentice Hall International Inc., New Jersey, pp. 359-369. (1995).
  9. Li, L., Dong, Y., Qian, G., Hu, X. and Ye, L., "Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen", Bioresour. Technol., 258, pp. 168-176. (2018). https://doi.org/10.1016/j.biortech.2018.02.121
  10. Wilke, C. R. and Chang, P., "Correlation of diffusion coefficients in dilute solutions", AIChE Journal, 1, pp. 264-270. (1955). https://doi.org/10.1002/aic.690010222
  11. Lin, C. S., Moulton, R. W. and Putnam, G. L., "Mass Transfer between Solid Wall and Fluid Streams. Mechanism and Eddy Distribution Relationships in Turbulent Flow", Ind. Eng. Chem., 45, pp. 636-640. (1953). https://doi.org/10.1021/ie50519a048
  12. Lee, S.-R. and Pakr, J.-W., "Interpretation of Ammonia Absorption Behavior in Water Turbulent Flow", J. Korea Org. Resour. Recycl. Assoc., 27, pp. 75-80 (2019).