DOI QR코드

DOI QR Code

Evaluation of Concrete Materials for Desulfurization Process By-products

황부산물의 콘크리트 원료 활용 가능성 평가

  • Park, Hye-Ok (Resource Circulation Technology Research Center, Sudokwon Landfill Site Management Corporation) ;
  • Kwon, Gi-Woon (Resource Circulation Technology Research Center, Sudokwon Landfill Site Management Corporation) ;
  • Lee, Kyeong-Ho (Resource Circulation Technology Research Center, Sudokwon Landfill Site Management Corporation) ;
  • Kim, Moon-Jeong (Resource Circulation Technology Research Center, Sudokwon Landfill Site Management Corporation) ;
  • Lee, Woo-Weon (Resource Circulation Technology Research Center, Sudokwon Landfill Site Management Corporation) ;
  • Ryu, Don-Sik (Resource Circulation Technology Research Center, Sudokwon Landfill Site Management Corporation) ;
  • Lee, Jong-Gyu (Research institute of Industrial Science&Technology (RIST) Environment&Energy Res. Center)
  • 박혜옥 (수도권매립지관리공사 자원순환기술연구소) ;
  • 권기운 (수도권매립지관리공사 자원순환기술연구소) ;
  • 이경호 (수도권매립지관리공사 자원순환기술연구소) ;
  • 김문정 (수도권매립지관리공사 자원순환기술연구소) ;
  • 이우원 (수도권매립지관리공사 자원순환기술연구소) ;
  • 류돈식 (수도권매립지관리공사 자원순환기술연구소) ;
  • 이종규 (포항산업과학연구원(RIST) 환경에너지연구그룹)
  • Received : 2020.11.04
  • Accepted : 2020.12.04
  • Published : 2020.12.30

Abstract

The landfill gas produced in landfill is generally made up of methane(CH4) and carbon dioxide(CO2) of more than 90%, with the remainder made up of hydrogen sulfide(H2S). However, separate pre-treatment facilities are essential as hydrogen sulfide contained in landfill gas is combined with oxygen during the combustion process to generate sulfur oxides and acid rain combined with moisture in the atmosphere. Various desulfurization technologies have been used in Korea to desulfurize landfill gas. Although general desulfurization processes apply various physical and chemical methods, such as treatment of sediment generation according to the CaCO3 generation reaction and treatment through adsorbent, there is a problem of secondary wastes such as wastewater. As a way to solve this problem, a biological treatment process is used to generate and treat it with sludge-type sulfide (S°) using a biological treatment process.In this study, as a basic study of technology for utilizing the biological treatment by-products of hydrogen sulfide in landfill gas, an experiment was conducted to use the by-product as a mixture of concrete. According to the analysis of the mixture concrete strength of sulfur products, the mixture of sulfur by-products affects the strength of concrete and shows the highest strength value when mixing 10%.

매립지에서 발생하는 매립가스 내 포함된 황화수소는 연소과정에서 산소와 결합하여 황산화물을 발생시키고 대기 중의 수분과 결합하여 산성비가 되는 등 다양한 환경 문제를 일으킴에 따라 별도의 전처리 시설이 필수적이다. 매립가스의 탈황을 위해 탄산칼슘(CaCO3) 생성 반응에 따른 침전물 생성 처리, 흡착제를 통한 처리 등 다양한 물리화학적인 방법을 적용하고 있으나, 폐수 등 2차 폐기물의 발생되는 문제가 있다. 이러한 단점을 보완하기 위한 방법으로 생물학적 처리 공정을 이용해 원소황(S°)으로 슬러지 형태인 황부산물로 생성시켜 처리하는 공법이 사용되고 있다. 본 연구에서는 매립가스 내 황화수소의 생물학적 처리 부산물을 활용하기 위한 기술의 기초연구로서 황부산물을 활용하여 콘크리트 혼화재로 사용하고 첨가량에 따른 강도 보조 효과를 알아보기 위한 실험을 수행하였다. 황부산물 혼합 콘크리트 강도 분석 결과, 황부산물의 혼합은 콘크리트 강도에 영향을 미치며, 10% 혼합시 가장 높은 강도 값을 보이는 것으로 나타났다. 특히, 황부산물 10% 혼합시 포졸란 반응과 CaSO4의 형성 등에 의해 결합 강도를 증가시키는 것으로 판단된다.

Keywords

References

  1. Deshmukh, G. M., Shete, A. and Pawar, D. M., "Xidative absorption of hydrogen sulfide using an iron-chelate based process: chelate degradation", J. Chem. Technol. Biotechnol., 88, pp. 432-436. (2013). https://doi.org/10.1002/jctb.3903
  2. Zhang, X., Tang, Y., Qu, S., Da, J. and Hao, Z., "2S-Selective catalytic oxidation: catalysts and processes", ACS Catal., 5, pp. 1053-1067. (2015). https://doi.org/10.1021/cs501476p
  3. Pokorna, D. and Zabranska, J., Ulfur-oxidizing bacteria in environmental technology, Biotechnol. Advances, 33(6 Pt 2), pp. 1246-1259. (2015). https://doi.org/10.1016/j.biotechadv.2015.02.007
  4. Shang, J., Qiu, M. and Ji, Z., "Fficiency improvement, consumption reduction and optimization of high sulfur natural gas sweetening units", Nat. Gas Ind., 6(5), pp. 472-480. (2019). https://doi.org/10.1016/j.ngib.2019.02.004
  5. Hong, C. W., "Durability of concrete using sulfurmodified polymer", J. Korean Cryst. Growth and Cryst. Technol., 25(5), 205-211. (2015). https://doi.org/10.6111/JKCGCT.2015.25.5.205
  6. Beaudoin, J. J., Feldman, R.F., "Durability of porous systems impregnated with dicyclopentadiene-modified sulfur", International Journal of Cement Composites and Lightweight Concrete, 6(1), 13-18. (1984). https://doi.org/10.1016/0262-5075(84)90055-1
  7. Terrel, Ronald L, Sulfur concrete composition and method of making shaped sulfur concrete articles, Sulphur Development Institute of Canada, September (1979).
  8. Kim, G. D., "Development of recycling technology from waste aggregate and dust from waste concrete (in Eng)", Journal of Ceramic Processing Presearch, 82(1), pp. 82-86, (2007).
  9. Jeong., Y. G., Mortar and concrete containing modified sulfur binder, SK Crop, January (2008).
  10. Yu, S. G., Choi, H. J., Kwon, H. N., Park, K. and Kim, G. D., "Properties of portland cement concrete with the addition of a modified sulfur polymer", Journal of Korea Crystal Growth and Crystal Technology, 20(192), pp. 192-196. (2010). https://doi.org/10.6111/JKCGCT.2010.20.4.192
  11. Shang, J., Qiu, M. and Ji, Z., "Fficiency improvement, consumption reduction and optimization of high sulfur natural gas sweetening units", Nat. Gas Ind., 6(5), pp. 472-480. (2019). https://doi.org/10.1016/j.ngib.2019.02.004
  12. KS F 2405, Standard test method for cpmoressive strength of concrete, KSSN, (2017).
  13. Duecker, W. W., "Admixtures Improve Properties of Sulfur Cements", Chemical and Metallurgical Engineering, 41(11), pp. 583-586. (1934).
  14. ASTM C 1159, 1987 Annual Book of ASTM Standards, V. 04.05, ASTM, Philadelphia, (1987).
  15. Cha, S. W., Kim, K. S. and Park, H. S., "Anufacture of modified sulfur polymer binder and characteristics of sulfur concrete", J. Con. Ins. 23(40), pp. 40-42. (2011).
  16. Mohamed, A. M. O. and El Gamal, M., Sulfur concrete for the construction industury: A Sustainable Development Approach. J. Ross Publishing, Inc, USA (2010).
  17. Yoon, J. H. and Heo, H. S., "An experimental study on the manufacturing of sulfur mortar", Journal of the Architectural Institute of Korea Structure & Construction, 22(6), pp. 95-102. (2006).
  18. [환경부, 먹는물 수질기준 및 검사 등에 관한 규칙] Drinking Water Quality Standards (Regulations on Drinking Water Quality Standards, Inspection, etc.), (2019).