DOI QR코드

DOI QR Code

지르코니아 및 티타늄 임플란트를 사용한 지지골 및 임플란트 유지 수복물의 응력 분포 비교: 3차원 유한 요소 분석

Comparison of stress distribution in bone and implant-supported dental prosthesis with zirconia and titanium implants: a 3-dimensional finite element analysis

  • 홍민호 (부산가톨릭대학교 보건과학대학 치기공학과)
  • Hong, Min-Ho (Department of Dental Laboratory Science, College of Health Science, Catholic University of Pusan)
  • 투고 : 2020.11.04
  • 심사 : 2020.12.16
  • 발행 : 2020.12.30

초록

Purpose: Zirconia is differentiated from other ceramics because of its high resistance to corrosion and wear, excellent flexural strength (900~1400 MPa), and high hardness. Dental zirconia with proven mechanical/biological stability is suitable for the manufacture of implants. However, there are limited in vivo studies evaluating stress distribution in zirconia compared with that in titanium implants and studies analyzing finite elements. This study was conducted to evaluate the stress distribution of the supporting bone surrounding zirconia and titanium implants using the finite element analysis method. Methods: For finite element analysis, a single implant-supported restoration was designed. Using a universal analysis program, eight occlusal points were set in the direction of the occlusal long axis. The occlusal load was simulated at 700 N. Results: The zirconia implant (47.7 MPa) von Mises stress decreased by 5.3% in the upper cortical bone compared with the titanium implant (50.2 MPa) von Mises stress. Similarly, the zirconia implant (20.8 MPa) von Mises stress decreased by almost 4% in the cancellous bone compared with the titanium implant (21.7 MPa) von Mises stress. The principal stress in the cortical and cancellous bone exhibited a similar propensity to von Mises stress. Conclusion: In the supporting bone, the zirconia implant is able to reduce bone resorption caused by mechanically transferred stress. It is believed that the zirconia implant can be a potential substitute for the titanium implant by reinforcing aesthetic characteristics and improving stress distribution.

키워드

참고문헌

  1. Khorasani AM, Goldberg M, Doeven EH, Littlefair G. Titanium in biomedical applications- properties and fabrication: a review. J Biomater Tissue Eng. 2015;5:593-619. https://doi.org/10.1166/jbt.2015.1361
  2. Siddiqi A, Payne AGT, De Silva RK, Duncan WJ. Titanium allergy: could it affect dental implant integration?Clin Oral Implants Res. 2011;22:673-680. https://doi.org/10.1111/j.1600-0501.2010.02081.x
  3. Gautam C, Joyner J, Gautam A, Rao J, Vajtai R. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Trans. 2016;45: 19194-19215. https://doi.org/10.1039/c6dt03484e
  4. Pjetursson BE, Zarauz C, Strasding M, Sailer I, Zwahlen M, Zembic A. A systematic review of the influence of the implant-abutment connection on the clinical outcomes of ceramic and metal implant abutments supporting fixed implant reconstructions. Clin Oral Implants Res. 2018;29 Suppl 18:160-183.
  5. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24:299-307. https://doi.org/10.1016/j.dental.2007.05.007
  6. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater. 2008;24:289-298. https://doi.org/10.1016/j.dental.2007.05.005
  7. Akagawa Y, Ichikawa Y, Nikai H, Tsuru H. Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J Prosthet Dent. 1993;69:599-604. https://doi.org/10.1016/0022-3913(93)90289-Z
  8. Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel). 2015;8:932-958. https://doi.org/10.3390/ma8030932
  9. Manzano G, Herrero LR, Montero J. Comparison of clinical performance of zirconia implants and titanium implants in animal models: a systematic review. Int J Oral Maxillofac Implants. 2014;29:311-320. https://doi.org/10.11607/jomi.2817
  10. Delgado-Ruiz RA, Gomez Moreno G, Aguilar-Salvatierra A, Markovic A, Mate-Sanchez JE, Calvo-Guirado JL. Human fetal osteoblast behavior on zirconia dental implants and zirconia disks with microstructured surfaces. An experimental in vitro study. Clin Oral Implants Res. 2016; 27:e144-e153. https://doi.org/10.1111/clr.12585
  11. Degidi M, Artese L, Scarano A, Perrotti V, Gehrke P, Piattelli A. Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in periimplant soft tissues around titanium and zirconium oxide healing caps. J Periodontol. 2006;77:73-80. https://doi.org/10.1902/jop.2006.77.1.73
  12. Borgonovo AE, Corrocher G, Dolci M, Censi R, Vavassori V, Maiorana C. Clinical evaluation of zirconium dental implants placed in esthetic areas: a case series study. Eur J Esthet Dent. 2013;8:532-545.
  13. Borgonovo AE, Censi R, Vavassori V, Dolci M, CalvoGuirado JL, Delgado Ruiz RA, et al. Evaluation of the success criteria for zirconia dental implants: a four-year clinical and radiological study. Int J Dent. 2013;2013:463073. https://doi.org/10.1155/2013/463073
  14. Cionca N, Muller N, Mombelli A. Two-piece zirconia implants supporting all-ceramic crowns: a prospective clinical study. Clin Oral Implants Res. 2015;26:413-418. https://doi.org/10.1111/clr.12370
  15. Grassi FR, Capogreco M, Consonni D, Bilardi G, Buti J, Kalemaj Z. Immediate occlusal loading of one-piece zirconia implants: five-year radiographic and clinical evaluation. Int J Oral Maxillofac Implants. 2015;30:671-680. https://doi.org/10.11607/jomi.3831
  16. Brull F, van Winkelhoff AJ, Cune MS. Zirconia dental implants: a clinical, radiographic, and microbiologic evaluation up to 3 years. Int J Oral Maxillofac Implants. 2014; 29:914-920. https://doi.org/10.11607/jomi.3293
  17. Borgonovo AE, Censi R, Vavassori V, Arnaboldi O, Maiorana C, Re D. Zirconia implants in esthetic areas: 4-year follow-up evaluation study. Int J Dent. 2015;2015:415029. https://doi.org/10.1155/2015/415029
  18. Kohal RJ, Papavasiliou G, Kamposiora P, Tripodakis A, Strub JR. Three-dimensional computerized stress analysis of commercially pure titanium and yttrium-partially stabilized zirconia implants. Int J Prosthodont. 2002;15:189-194.
  19. Caglar A, Bal BT, Karakoca S, Aydin C, Yilmaz H, Sarisoy S. Three-dimensional finite element analysis of titanium and yttrium-stabilized zirconium dioxide abutments and implants. Int J Oral Maxillofac Implants. 2011;26:961-969.
  20. Alkan I, Sertgoz A, Ekici B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J Prosthet Dent. 2004;91:319-325. https://doi.org/10.1016/j.prosdent.2004.01.016
  21. Jorn D, Kohorst P, Besdo S, Rucker M, Stiesch M, Borchers L. Influence of lubricant on screw preload and stresses in a finite element model for a dental implant. J Prosthet Dent. 2014;112:340-348. https://doi.org/10.1016/j.prosdent.2013.10.016
  22. Verri FR, Santiago Junior JF, Almeida DA, Verri AC, Batista VE, Lemos CA, et al. Three-dimensional finite element analysis of anterior single implant-supported prostheses with different bone anchorages. Scientific World J. 2015;2015:321528.
  23. Ha SR, Kim SH, Lee JB, Han JS, Yeo IS, Yoo SH, et al. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement thickness. Ceram Int. 2016;42:14928-14936. https://doi.org/10.1016/j.ceramint.2016.06.133
  24. Marcian P, Wolff J, Horackova L, Kaiser J, Zikmund T, Borak L. Micro finite element analysis of dental implants under different loading conditions. Comput Biol Med. 2018;96:157-165. https://doi.org/10.1016/j.compbiomed.2018.03.012
  25. Perez-Pevida E, Brizuela-Velasco A, Chavarri-Prado D, Jimenez-Garrudo A, Sanchez-Lasheras F, Solaberrieta-Mendez E, et al. Biomechanical consequences of the elastic properties of dental implant alloys on the supporting bone: finite element analysis. Biomed Res Int. 2016;2016: 1850401.