DOI QR코드

DOI QR Code

Juniperus chinensis extract induces apoptosis via reaction oxygen species (ROS) generation in human pancreatic cancer cell lines

  • Go, Boram (Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University) ;
  • Han, Song-I (Subtropical/tropical organism gene bank, jeju National University) ;
  • Lee, Jungwhoi (Subtropical/tropical organism gene bank, jeju National University) ;
  • Kim, Da-Hye (Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University) ;
  • Kim, Chang-Sook (Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University) ;
  • Kim, Jae Hoon (Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University)
  • Received : 2020.09.29
  • Accepted : 2020.12.06
  • Published : 2020.12.31

Abstract

Pancreatic cancer is among the most difficult-to-treat tumors. More than half of patients with this cancer have very few symptoms at the early stages, allowing the development of distant metastases and resistance to cancer treatment. In this study, we found that Juniperus chinensis extract (JCX) decreased the cell viability and migration activity of PANC-1 and SNU-213 pancreatic cancer cells in a dose-dependent manner. JCX increased caspase-3 activation and generation of reactive oxygen species (ROS). N-acetylcysteine treatment blocked JCX-induced ROS generation and the negative effects on pancreatic cancer cell viability. In addition, JCX down-regulated the levels of phospho-focal adhesion kinase (p-FAK) and phospho-extracellular signal-regulated kinase (p-ERK). Together, these results indicate that JCX induces apoptosis in human pancreatic cancer cell lines through ROS production, downregulating FAK/ERK signaling and activating caspase-3. We propose that JCX-derived compounds represent candidates for the development of alternative medicines for the treatment of pancreatic cancer.

Keywords

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics. CA Cancer J Clin 68(1): 7-30, doi: 10.3322/caac.21442
  2. Samulitis BK, Pond KW, Pond E, Cress AE, Patel H, Wisner L, Patel C, Dorr RT, Landowski TH (2015) Gemcitabine resistant pancreatic cancer cell lines acquire an invasive phenotype with collateral hypersensitivity to histone deacetylase inhibitors. Cancer Biol Ther 16(1): 43-51, doi: 10.4161/15384047.2014.986967
  3. Kuo YH, Chen WC (1994) Three new diterpenes, 1, 3-dioxototarol, isototarolenone, and 1-oxo-3β-hydroxytotarol, form the roots of juniperus chinensis linn. Chem Pharm Bull (Tokyo) 42(9): 1774-1776 https://doi.org/10.1248/cpb.42.1774
  4. Lee CK, Fang JM, Cheng YS (1995) Norditerpenes from juniperus chinensis. Phytochemistry 39(2): 391-394 https://doi.org/10.1016/0031-9422(94)00868-T
  5. Ohashi H, Asai T, Kawai S (1994) Screening of main japanese conifers for antifungal leaf components, sesquiterpenes of juniperus chinensis var. Pyramidalis. Holzforschung 48(3): 193, doi: 10.1515/hfsg.1994.48.3.193
  6. Clark AM, McChesney JD, Adams RP(1990) Antimicrobial properties of heartwood, bark/sapwood and leaves of juniperus species. Phytotherapy Research 4(1): 15-19, doi: 10.1002/ptr.2650040105
  7. Feliciano AS, Gordaliza M, del Corral JMM, Castro MA, Garcia-Gravalos MD, Ruiz-Lazaro P (1993) Antineoplastic and antiviral activities of some cyclolignans. Planta Med 59(03): 246-249, doi: 10.1055/s-2006-959660
  8. Tammami B, Torrance SJ, Cole JR (1977) Antitumor agent from juniperus bermudiana (pinaceae): Deoxypodophyllotoxin. Phytochemistry 16: 1100-1101 https://doi.org/10.1016/S0031-9422(00)86752-7
  9. Ali AM, Mackeen MM, Intan-Safinar I, Hamid M, Lajis NH, El-Sharkawy SH,Murakoshi M (1996) Antitumour-promoting and antitumour activities of the crude extract from the leaves of juniperus chinensis. J Ethopharmacol 53(3): 165-169, doi: 10.1016/0378-8741(96)01434-1
  10. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: Signaling for suicide and survival*. J Cell Physiol 192(1): 1-15, doi: 10.1002/jcp.10119
  11. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239): 780-783, doi: 10.1038/nature07733
  12. Hanahan D, Weinberg RA: The hallmarks of cancer (2000) Cell 100(1): 57-70, doi: 10.1016/s0092-8674(00)81683-9
  13. Fernald K, Kurokawa M (2013) Evading apoptosis in cancer. Trends Cell Biol 23(12): 620-633, PMID: 4091735, doi: 10.1016/j.tcb.2013.07.006
  14. Zachary I (1997) Focal adhesion kinase. Int J Biochem Cell Biol 29(7): 929-934 doi: 10.1016/s1357-2725(97)00008-3
  15. Zhao J, Guan JL (2009) Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 28(1-2): 35-49, doi: 10.1007/s10555-008-9165-4
  16. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC (2005) The role of focal-adhesion kinase in cancer-a new therapeutic opportunity. Nature Reviews Cancer 5(7): 505-515, doi: 10.1038/nrc1647
  17. Mebratu Y, Tesfaigzi Y (2009) How erk1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 8(8): 1168-1175, doi: 10.4161/cc.8.8.8147
  18. Kwon H-J, Lee E-W, Hong Y-K, Yun H-J, Kim B-W: Widdrol from juniperus chinensis induces apoptosis in human colon adenocarcinoma ht29 cells. Biotechnology and Bioprocess Engineering 15(1): 167-172, doi: 10.1007/s12257-009-0154-4
  19. Kang MR, Park S-K, Lee CW, Cho IJ, Jo YN, Yang JW, Kim J-A, Yun J, Lee KH, Kwon HJ, Kim BW, Lee K, Kang JS, Kim HM (2012) Widdrol induces apoptosis via activation of amp-activated protein kinase in colon cancer cells. Oncol Rep 27(5): 1407-1412, doi: 10.3892/or.2012.1644
  20. Kamarajan P, Kapila YL (2007) An altered fibronectin matrix induces anoikis of human squamous cell carcinoma cells by suppressing integrin alpha v levels and phosphorylation of fak and erk. Apoptosis 12(12): 2221-2231, doi: 10.1007/s10495-007-0138-9
  21. Tan X, Xu A, Zhao T, Zhao Q, Zhang J, Fan C, Deng Y, Freywald A, Genth H, Xiang J (2018) Simulated microgravity inhibits cell focal adhesions leading to reduced melanoma cell proliferation and metastasis via fak/rhoa-regulated mtorc1 and ampk pathways. Scientific Reports 8(1): 3769, doi: 10.1038/s41598-018-20459-1
  22. Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK (2008) In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ros generation and mitochondrial death pathway. Apoptosis 13(12): 1465-1478, doi: 10.1007/s10495-008-0278-6
  23. Qanungo S, Das M, Haldar S, Basu A (2005) Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 26(5): 958-967, doi: 10.1093/carcin/bgi040
  24. Sahu RP, Zhang R, Batra S, Shi Y, Srivastava SK (2009) Benzyl isothiocyanate-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of mapk in human pancreatic cancer cells. Carcinogenesis 30(10): 1744-1753, doi: 10.1093/carcin/bgp157
  25. Kim D-H, Han S-I, Go B, Oh U-H, Kim C-S, Jung Y-H, Lee J, Kim J-H (2019) 2-Methoxy-4-vinylphenol attenuates migration of human pancreatic cancer cells via blockade of FAK and AKT Signaling. Anticancer Res 29(12): 6695-6691, doi: 10.21873/anticanres.13883