DOI QR코드

DOI QR Code

Free radical scavenging activity and protective effect of three glycyrrhiza varieties against hydrogen peroxide-induced oxidative stress in C6 glial cells

종류별 감초의 라디칼 소거능 및 H2O2에 의한 C6 glial 세포의 산화적 스트레스 개선 효과

  • Kim, Ji Hyun (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Cho, Min Ji (Department of Food Science and Nutrition, Pusan National University) ;
  • Park, Chan Hum (Department of Herbal Crop Research, NIHHS, RDA) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition, Pusan National University) ;
  • Kim, Hyun Young (Department of Food Science, Gyeongnam National University of Science and Technology)
  • Received : 2020.09.15
  • Accepted : 2020.10.13
  • Published : 2020.12.31

Abstract

Oxidative stress is common cause of neurodegenerative diseases. The purpose of this study is to investigate the in vitro free radical scavenging activity and protective effect of three Glycyrrhiza species including Glycyrrhiza uralensis, G. glabra, and a new variety of Glycyrrihza (Shinwongam, SW) against hydrogen peroxide-induced oxidative stress in C6 glial cells. In vitro assays, radical scavenging activities of G. uralensis, G. glabra, and SW against 2,2-diphenyl-1-picrylhydrazyl, ·OH, and O2- increased as concentration-dependent manner. In addition, the SW was found to contain the highest polyphenol and flavonoid contents. The treatment of H2O2 to C6 glial cell induced oxidative stress, whereas G. uralensis, G. glabra, and SW significantly increased the cell viability as dose-dependent manner. In particular, SW exerted stronger protective effect on H2O2-induced cytotoxicity, than G. uralensis and G. glabra. Furthermore, reactive oxygen species (ROS) formation was significantly elevated by H2O2 in C6 glial cells. However, treatments of G. uralensis, G. glabra, and SW decreased ROS formation. In addition, SW decreased pro-inflammatory related protein expression levels such as inducible nitric oxide synthase and cyclooxygenase-2, compared to H2O2-treated control group. These results indicated that G. uralensis and G. glavra, especially SW, may be useful for preventing from oxidative stress-induced neuronal damage by regulating inflammatory reaction.

산화적 스트레스는 신경퇴행성 질환 발병의 원인으로 알려져 있다. 본 연구는 대표적인 감초 종류인 Glycyrrhiza glabra, G. uralensis와 신품종 감초인 신원감(SW)의 in vitro free radical 소거능을 통한 항산화 활성과 H2O2 유도 산화적 스트레스에 대한 C6 glial cell 보호 효능을 확인하고자 하였다. In vitro assay에서 G. uralensis, G. glabra, SW 추출물은 농도유의적으로 2,2-diphenyl-1-picrylhydrazyl, ·OH, O2- radical 소거능이 증가하여 in vitro 항산화 활성을 확인하였다. 또한, SW 추출물은 G. uralensis, G. glabra 추출물에 비해 총 페놀 및 플라보노이드 함량이 가장 우수하였다. H2O2로 산화적 스트레스를 유도한 C6 glial cell에 3가지 감초 추출물을 각각 처리 시, 농도의존적으로 세포 생존율이 증가와 reactive oxygen species 소거능이 증가하여 3가지 감초 추출물의 산화적 손상에 대한 신경교세포 보호 효과를 확인하였다. 특히, SW 추출물은 G. uralensis, G. glabra 추출물에 비해 우수하게 C6 glial cell 보호 효과를 나타내었다. 또한, 3가지 감초 추출물의 신경교세포 보호 메커니즘을 확인하기 위해, 염증 관련 단백질 발현을 측정하였다. 3가지 감초 추출물은 H2O2만을 처리한 control군에 비해 inducible nitric oxide synthase 및 cyclooxygenase-2 발현 감소를 통해 염증반응 조절을 통한 신경교세포 보호 작용기전을 확인하였다. 본 연구는 G. uralensis, G. glabra, SW 등 3가지 감초 추출물이 산화적 손상이 유도된 신경교세포 보호에 유용한 소재로써의 가능성이 있는 것으로 사료된다.

Keywords

References

  1. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52: 794-804
  2. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84 https://doi.org/10.1016/j.biocel.2006.07.001
  3. Rimessi A, Previati M, Nigro F, Wieckowski MR, Pinton P (2016) Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. Int J Biochem Cell Biol 81: 281-293 https://doi.org/10.1016/j.biocel.2016.06.015
  4. Taylor DL, Edwards AD, Mehmet H (1999) Oxidative metabolism, apoptosis and perinatal brain injury. Brain Pathol 9: 93-117 https://doi.org/10.1111/j.1750-3639.1999.tb00213.x
  5. Albarracin SL, Stab B, Casas Z, Sutachan JJ, Samudio I, Gonzalez J, Gonzalo L, Capani F, Morales L, Barreto GE (2012) Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci 15: 1-9 https://doi.org/10.1179/1476830511Y.0000000028
  6. Ghosh N, Ghosh R, Mandal SC (2011) Antioxidant protection: a promising therapeutic intervention in neurodegenerative disease. Free Radic Res 45: 888-905 https://doi.org/10.3109/10715762.2011.574290
  7. Ha JH, Lee HM, Kwon SS, Kim HS, Kim MJ, Jeon SH, Jeong YM, Hwang JP, Park JH, Choi YK, Park J, Park SN, Park DS (2013) Screening of effective extraction conditions for increasing antioxidant activities of licorice extracts from various countries of origin. J Soc Cosmet Scientists Korea 39: 259-269 https://doi.org/10.15230/SCSK.2013.39.4.259
  8. Kim SJ, Kweon DH, Lee JH (2006) Investigation of antioxidative activity and stability of ethanol extracts of licorice root (Glycyrrhiza glabra). Korean J Food Sci Technol 38: 584-588
  9. Shul'ts EE, Petrova TN, Shakirov MM, Chernyak EI, Tolstikov GA (2000) Flavonoids of roots of Glycyrrhiza uralensis growing in siberia. Chem Nat Compd 36: 362-368 https://doi.org/10.1023/A:1002836729067
  10. Kim HJ, Jang HN, Bae JY, Ha JH, Park SN (2014) Antimicrobial activity, quantification and bactericidal activities of licorice active ingredients. Korean J Microbiol Biotechnol 42: 386-392 https://doi.org/10.4014/kjmb.1410.10002
  11. Jang DE, Song J, Hwang IG, Lee SH, Choe JS, Hwang KA (2017) Determination of glycyrrhizic acid content and anti-diabetic effect of Glycyrrhiza uralensis depending on cultivation region. J Korean Soc Food Sci Nutr 46: 39-45 https://doi.org/10.3746/jkfn.2017.46.1.039
  12. Kondo K1, Shiba M, Nakamura R, Morota T, Shoyama Y (2007) Constituent properties of licorices derived from Glycyrrhiza uralensis, G. glabra, or G. inflata identified by genetic information. Biol Pharm Bull 30: 1271-1277 https://doi.org/10.1248/bpb.30.1271
  13. National Institute of Horticultural and Herbal Science (2014) Annual Reports. Wanju: National Institute of Horticultural and Herbal Science 2014: 58-59
  14. Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T (1989) Effects of the interaction of tannins with co-existing substances: Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 37: 2016-2021 https://doi.org/10.1248/cpb.37.2016
  15. Kim JW, Minamikawa T (1997) Hydroxy radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Biosci Biotechnol Biochem 61: 118-123 https://doi.org/10.1271/bbb.61.118
  16. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46: 849-854 https://doi.org/10.1016/S0006-291X(72)80218-3
  17. Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243 https://doi.org/10.1016/S0021-9258(18)88697-5
  18. Moreno MI, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114 https://doi.org/10.1016/S0378-8741(99)00189-0
  19. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  20. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27: 612-616 https://doi.org/10.1016/S0891-5849(99)00107-0
  21. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53: 1841-1856 https://doi.org/10.1021/jf030723c
  22. Ha JH, Lee HM, Kwon SS, Kim HS, Kim MJ, Jeon SH, Jeong YM, Hwang JP, Park JH, Choi Y, Park J, Park SN, Park DS (2013) Screening of effective extraction conditions for increasing antioxidant activities of licorice extracts from various countries of origin. J Soc Cosmet Scientists Korea 39: 259-269 https://doi.org/10.15230/SCSK.2013.39.4.259
  23. Woo KS, Jang KI, Kim KY, Lee HB, Jeong HS (2006) Antioxidative activity of heat treated licorice (Glycyrrhiza uralensis Fisch) extracts. Korean J Food Sci Technol 38: 355-360
  24. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1-14 https://doi.org/10.1042/bj2190001
  25. Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24: E1583
  26. Gutteridge JM (1987) Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J 243: 709-714 https://doi.org/10.1042/bj2430709
  27. Chung HY, Kim HB (2000) In vitro studies on the superoxide scavenging activities, the cytotoxic and the immunomodulating effects of thirteen kinds of herbal extracts. Korean J Food Sci Technol 32: 699-705
  28. Singla RK, Dubey AK, Garg A, Sharma RK, Fiorino M, Ameen SM, Haddad MA, Al-Hiary M (2019) Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int 102: 1397-1400 https://doi.org/10.5740/jaoacint.19-0133
  29. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Scientific World Journal 2013: 162750
  30. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2: 270-278 https://doi.org/10.4161/oxim.2.5.9498
  31. Lue LF, Walker DG, Rogers J (2001) Modeling microglial activation in Alzheimer's disease with human postmortem microglial cultures. Neurobiol Aging 22: 945-956 https://doi.org/10.1016/S0197-4580(01)00311-6
  32. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19: 312-318 https://doi.org/10.1016/0166-2236(96)10049-7
  33. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14 https://doi.org/10.1186/1742-2094-1-14
  34. Farfara D, Lifshitz V, Frenkel D (2008) Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease. J Cell Mol Med 12: 762-780 https://doi.org/10.1111/j.1582-4934.2008.00314.x
  35. Quincozes-Santos A, Andreazza AC, Nardin P, Funchal C, Goncalves CA, Gottfried C (2007) Resveratrol attenuates oxidative-induced DNA damage in C6 Glioma cells. Neurotoxicology 28: 886-891 https://doi.org/10.1016/j.neuro.2007.03.008
  36. Lee AY, Wu TT, Hwang BR, Lee J, Lee MH, Lee S, Cho EJ (2016) The neuro-protective effect of the methanolic extract of Perilla frutescens var. japonica and rosmarinic acid against H2O2-induced oxidative stress in C6 glial cells. Biomol Ther 24: 338-345 https://doi.org/10.4062/biomolther.2015.135
  37. Park CH, Kim JH, Choi SH, Shin YS, Lee SW, Cho EJ (2017) Protective effects of Glycyrrhiza uralensis Radix extract and its active compounds on H2O2-induced apoptosis of C6 glial cells. Korean J Medicinal Crop Sci 25: 315-321 https://doi.org/10.7783/KJMCS.2017.25.5.315
  38. Lee SE, Lee JH, Park CG, Kim HD, Lee YJ, Seo KH, Jeong HS, Chang JK, Kim DH (2019) Evaluation of the in vitro activity of Glycyrrhiza cultivar roots. Korean J Medicinal Crop Sci 27: 115-125 https://doi.org/10.7783/KJMCS.2019.27.2.115
  39. Han SB, Gu HA, Kim SJ, Kim HJ, Kwon SS, Kim HS, Jeon SH, Hwang JP, Park SN (2013) Comparative study on antioxidative activity of Glycyrrhiza uralensis and Glycyrrhiza glabra extracts by country of origin. J Soc Cosmet Scientists Korea 39: 1-8 https://doi.org/10.15230/SCSK.2013.39.1.001
  40. Kao TC, Shyu MH, Yen GC (2009) Neuroprotective effects of glycyrrhizic acid and 18beta-glycyrrhetinic acid in PC12 cells via modulation of the PI3K/Akt pathway. J Agric Food Chem 57: 754-761 https://doi.org/10.1021/jf802864k
  41. Nussler AK, Billiar TR (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54: 171-178 https://doi.org/10.1002/jlb.54.2.171
  42. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69: 145-182 https://doi.org/10.1146/annurev.biochem.69.1.145
  43. Wu KK, Liou JY (2005) Cellular and molecular biology of prostacyclin synthase. Biochem Biophys Res Commun 338: 45-52 https://doi.org/10.1016/j.bbrc.2005.08.021
  44. Bak JP, Son JH, Kim YM, Lee EU, Leem KY, Kim EH (2011) Suppression of inflammatory macrophage response by Glycyrrhiza uralensis herbal acupuncture extract. Korean J of Acupunct 28: 49-58
  45. Li C, Eom T, Jeong Y (2015) Glycyrrhiza glabra L. extract inhibits LPS-induced inflammation in RAW macrophages. J Nutr Sci Vitaminol 61: 375-381 https://doi.org/10.3177/jnsv.61.375
  46. Yu JY, Ha JY, Kim KM, Jung YS, Jung JC, Oh S (2015) Anti-Inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules 20: 13041-13054 https://doi.org/10.3390/molecules200713041